【抽象代数】伽罗瓦理论简介

本文简要介绍了伽罗瓦理论及其在代数扩域中的应用。阐述了正规扩域的概念,强调了伽罗瓦群在域扩张中的作用,以及自共轭域的唯一性。探讨了伽罗瓦扩张与自同构子群之间的关系,并证明了Artin定理。此外,文章还探讨了伽罗瓦理论在正多边形作图和多项式求根问题上的经典应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伽罗瓦理论

一、正规扩域

在研究域 F 的代数扩张 E 时,首要的前提是扩域 E 是存在的,其次还要让所有扩域在同一个空间,即它们之间是可运算的。满足这样条件的空间便是 F 的代数闭包,使用集合论的语言,代数闭包可以描述成所有多项式的分裂域之并。这个定义合法性其实还是需要推敲的,你可以结合代数扩域的性质自行讨论,这里就先假定它的存在性。其次,不同的闭包之间并不一定是互通的,下面的讨论将回避这种“平行世界”的讨论,将范围限制在某个选定的代数闭包 Ω Ω Ω中。

即使只在某个闭包中,满足特定条件的扩域总也有多种选择的方法,这种将域对应到闭包中的映射一般称为域的嵌入

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smilejiasmile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值