Galois理论

共轭域

  • 将域K上所有代数元都添加到K中得到域 K a c K^{ac} Kac,称为K的代数闭包(algebraic closure)。
  • K a c K^{ac} Kac代数封闭的 ( L L L的任何扩域中元素 α \alpha α在L上代数,则 α ∈ L \alpha \in L αL;即 L L L不存在更大代数扩域)。代数封闭域一定是无限域。
  • 有理数域 Q Q Q的有限扩域 (自然是代数扩域) K K K叫做代数数域 (简称数域)。
  • 代数扩张 L / K L/K L/K,有: L a c = K a c L^{ac}=K^{ac} Lac=Kac;数域 K K K的代数闭包 K a c = Q a c ⊊ C K^{ac} = Q^{ac} \subsetneq C Kac=QacC
  • 域扩张 L / K L/K L/K,任意 α ∈ L \alpha \in L αL的极小多项式 f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x] K a c K^{ac} Kac中的所有根 { α i ∣ f ( α i ) = 0 } \{\alpha_i|f(\alpha_i)=0\} {αif(αi)=0}叫做 α \alpha α K − K- K共轭
  • 域扩张 L / K L/K L/K,映射 σ : L → L a c \sigma:L \rightarrow L^{ac} σ:LLac,若 α ∈ K ,   σ ( α ) = α \alpha \in K,\, \sigma(\alpha)=\alpha αK,σ(α)=α,且 σ ( L ) ≅ L \sigma(L) \cong L σ(L)L,称 σ \sigma σ L L L K − K- K嵌入 σ ( L ) \sigma(L) σ(L)叫做 L L L K − K- K共轭域。若 L L L K − K- K共轭域均等于 L L L (请区分“同构”、“等于”、“不动”),称 L L L K − K- K自共轭域
  • K − K- K嵌入的扩张定理 M M M K K K的扩域,若 τ : M → M a c \tau:M \rightarrow M^{ac} τ:MMac K − K- K嵌入,则对于 M M M的每一个扩域 L L L,均恰好有 [ L : M ] [L:M] [L:M] K − K- K嵌入 σ : L → M a c \sigma:L \rightarrow M^{ac} σ:LMac,使得 σ ∣ M = τ \sigma|_M = \tau σM=τ
  • 域扩张 L / K L/K L/K L L L的的 K − K- K嵌入 σ : L → L a c \sigma:L \rightarrow L^{ac} σ:LLac,将任意的 α ∈ L \alpha \in L αL,映射到 α \alpha α的某个共轭元素 σ ( α ) \sigma(\alpha) σ(α)

可分扩张

  • 可分多项式:多项式 f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x],其每个不可约因式都在 K a c K^{ac} Kac上无重根。

  • 不可约多项式 f ( x ) f(x) f(x)无重根,当仅当 ( f ( x ) , f ′ ( x ) ) = 1 (f(x),f'(x))=1 (f(x),f(x))=1

    对于特征0域,不可约多项式无重根。

    对于特征p域 K K K,不可约多项式 f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x]有重根,当仅当存在不可约多项式 h ( x ) ∈ K [ x ] h(x) \in K[x] h(x)K[x],使得 f ( x ) = h ( x p ) f(x)=h(x^{p}) f(x)=h(xp)

    对于特征p域 K K K,不可约多项式 f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x]有重根,当仅当存在不可约多项式 h ( x ) ∈ K [ x ] h(x) \in K[x] h(x)K[x] h ( x ) h(x) h(x)无重根,使得 f ( x ) = h ( x p e ) ,   e ∈ Z > 0 f(x)=h(x^{p^e}),\, e \in Z_{>0} f(x)=h(xpe),eZ>0

    特征p域 K K K上,不可约多项式 f ( x ) f(x) f(x)所有根在 K a c K^{ac} Kac中重数相同。

  • K K K中所有不可约多项式都是可分的,则 K K K完全域

    定义 K p = { α p ∣ α ∈ K } K^p=\{\alpha^p|\alpha \in K\} Kp={αpαK},特征0域和 K = K p K=K^p K=Kp的特征p域是完全域。

    特征p的有限域满足 G F ( q ) p = G F ( q ) GF(q)^p=GF(q) GF(q)p=GF(q);非完全域一定是特征p的无限域。

  • 域扩张 L / K L/K L/K α ∈ L \alpha \in L αL f ( x ) f(x) f(x) α \alpha α K K K上极小多项式。若 f ( x ) f(x) f(x)在代数闭包 K a c K^{ac} Kac上可分,那么 α \alpha α L L L的一个可分元

  • 域扩张 L / K L/K L/K,如果 L L L中每个元素都是 K K K上可分元,那么 L / K L/K L/K可分扩张

  • 域扩张 L / K L/K L/K [ L : K ] = n [L:K]=n [L:K]=n,若 L L L存在n个 K − K- K嵌入,那么 L / K L/K L/K是可分扩张。

  • 完全域 K K K的代数扩张 L / K L/K L/K L L L中元素在 K K K上代数,其极小多项式是可分多项式,因此是可分扩张。

  • 单扩张定理 ( A r t i n Artin Artin本原性定理) :有限可分扩张都是单代数扩张。

  • 同构延拓定理:设 σ : F → F ′ \sigma:F \rightarrow F' σ:FF 是域同构,多项式 f ( x ) = ∑ i f i x i ∈ F [ x ] f(x)=\sum_i f_ix^i \in F[x] f(x)=ifixiF[x] 的分裂域 K K K,另一个多项式 f σ ( x ) : = ∑ i σ ( f i ) x i ∈ F ′ [ x ] f^\sigma(x):=\sum_i \sigma(f_i)x^i \in F'[x] fσ(x):=iσ(fi)xiF[x] 的分裂域 K ′ K' K,那么 σ \sigma σ 可以延拓成域同构 τ : K → K ′ \tau:K \rightarrow K' τ:KK,它满足 τ ∣ F = σ \tau|_F=\sigma τF=σ,延拓的个数 m m m 满足 1 ≤ m ≤ [ K : F ] 1 \le m \le [K:F] 1m[K:F];如果 f ( x ) f(x) f(x) 可分,则 m = [ K : F ] m=[K:F] m=[K:F]

正规扩张

  • 域扩张 L / K L/K L/K,若 ∀ α ∈ L \forall \alpha \in L αL α \alpha α K K K上的极小多项式在 L L L上分裂,那么 L / K L/K L/K正规扩张
  • L / K L/K L/K是正规扩张,当仅当 L L L K K K上一个 (可分/不可分,可约/不可约) 多项式的分裂域。
  • 有限扩张 K / F K/F K/F E E E K K K的代数扩域。若 E / F E/F E/F是正规扩张,且任意的 K ⊆ L ⊆ E K \subseteq L \subseteq E KLE使得 L / K L/K L/K正规都有 L = E L=E L=E,称 E E E K K K正规闭包(normal closure)。正规闭包存在且唯一。

Galois扩张

  • L L L中所有的自同构组成了乘法群 A u t ( L ) Aut(L) Aut(L),称为 L L L自同构群
  • A u t ( Q ) = { I } ,   A u t ( F p ) = { I } Aut(Q)=\{I\},\, Aut(F_p)=\{I\} Aut(Q)={I},Aut(Fp)={I},素域的自同构只有恒等自同构
  • 域扩张 L / K L/K L/K L L L中所有的 K − K- K自同构组成了乘法群 G a l ( L / K ) Gal(L/K) Gal(L/K),称为 L / K L/K L/KGalois群,它是 A u t ( L ) Aut(L) Aut(L)的子群。
  • G a l ( L / Q ) = A u t ( L ) ,   G a l ( L / F p ) = A u t ( L ) Gal(L/Q)=Aut(L),\, Gal(L/F_p)=Aut(L) Gal(L/Q)=Aut(L),Gal(L/Fp)=Aut(L),素域扩张 L / K L/K L/K的Galois群就是 L L L的自同构群。
  • 单扩张 L = K ( α ) / K L=K(\alpha)/K L=K(α)/K,扩张元 α \alpha α K K K上极小多项式 f ( x ) f(x) f(x) K a c K^{ac} Kac上有n个根,落在 L L L中的不同根为 { α 1 , . . . , α m } \{\alpha_1,...,\alpha_m\} {α1,...,αm},那么 G a l ( L / K ) = { σ i ∣ σ i : α ↦ α i ,   1 ≤ i ≤ m } Gal(L/K)=\{\sigma_i|\sigma_i:\alpha \mapsto \alpha_i,\, 1 \le i \le m\} Gal(L/K)={σiσi:ααi,1im}
  • 任意域扩张 L / K L/K L/K,都有 ∣ G a l ( L / K ) ∣ ≤ [ L : K ] |Gal(L/K)| \le [L:K] Gal(L/K)[L:K]。若 ∣ G a l ( L / K ) ∣ = [ L : K ] |Gal(L/K)| = [L:K] Gal(L/K)=[L:K],此时 L L L K − K- K自共轭域,那么称 L / K L/K L/KGalois扩张
  • Galois扩张,等价于有限可分正规扩张。于是,Galois扩张是单代数扩张。
  • L / K L/K L/K是Galois扩张,当仅当 L L L K K K上一个 (可约/不可约) 可分多项式的分裂域。
  • K = Q K=Q K=Q K = G F ( q ) K=GF(q) K=GF(q),令 ξ n \xi_n ξn是n次单位根。n次分圆域 K ( ξ n ) K(\xi_n) K(ξn) x n − 1 ∈ K [ x ] x^n-1 \in K[x] xn1K[x]的分裂域,因此 K ( ξ n ) / K K(\xi_n)/K K(ξn)/K是Galois扩张。有限域 G F ( q ) GF(q) GF(q)是分圆域,考虑多项式 x q − x x^q-x xqx

Galois理论

  • Galois扩张 L / K L/K L/K,每一个中间域 K ⊆ M ⊆ L K \subseteq M \subseteq L KML L / M L/M L/M都是Galois扩张。记 H = G a l ( L / M ) ⊆ G a l ( L / K ) H=Gal(L/M) \subseteq Gal(L/K) H=Gal(L/M)Gal(L/K) α ∈ M ⇔ ∀ σ ∈ H ,   σ ( α ) = α \alpha \in M \Leftrightarrow \forall \sigma \in H,\, \sigma(\alpha)=\alpha αMσH,σ(α)=α

    M的稳定子: ϕ ( M ) = { g ∈ G a l ( L / K ) ∣ g ( m ) = m , ∀ m ∈ M } = H \phi(M) = \{g \in Gal(L/K)|g(m)=m, \forall m \in M\} = H ϕ(M)={gGal(L/K)g(m)=m,mM}=H

    H的不动点: ψ ( H ) = { α ∈ L ∣ σ ( α ) = α , ∀ σ ∈ H } = M \psi(H) = \{\alpha \in L|\sigma(\alpha)=\alpha, \forall \sigma \in H\} = M ψ(H)={αLσ(α)=α,σH}=M

    易知, M = ψ ϕ ( M ) M=\psi\phi(M) M=ψϕ(M) H = ϕ ψ ( H ) H=\phi\psi(H) H=ϕψ(H) ϕ , ψ \phi,\psi ϕ,ψ都是双射,且互为逆映射。

  • H H H是群 G G G的子群,那么 σ ∈ G ,   σ H σ − 1 \sigma \in G,\, \sigma H \sigma^{-1} σG,σHσ1也是 G G G的子群,且与 H H H同构,称共轭子群。若 ∀ σ ,   σ H σ − 1 = H \forall \sigma,\, \sigma H \sigma^{-1} = H σ,σHσ1=H,即 H H H只有一个共轭子群,那么称 H H H正规子群

  • Galois扩张 L / K L/K L/K,中间域 M M M对应子群 H = G a l ( L / M ) H=Gal(L/M) H=Gal(L/M)。任取 σ ∈ G a l ( L / K ) \sigma \in Gal(L/K) σGal(L/K) H H H的共轭子群 σ H σ − 1 \sigma H \sigma^{-1} σHσ1对应于 M M M K − K- K共轭域 σ ( M ) \sigma(M) σ(M),两者数量相等;当仅当 H ⊲ G a l ( L / K ) H \lhd Gal(L/K) HGal(L/K) M M M K − K- K自共轭域,从而 M / K M/K M/K是Galois扩张。

  • M / K M/K M/K是Galois扩张,那么 g : G a l ( L / K ) → G a l ( M / K ) g:Gal(L/K) \rightarrow Gal(M/K) g:Gal(L/K)Gal(M/K)是群同态,且 K e r   g = G a l ( L / M ) Ker\,g = Gal(L/M) Kerg=Gal(L/M),因此 G a l ( M / K ) ≅ G a l ( L / K ) / G a l ( L / M ) Gal(M/K) \cong Gal(L/K)/Gal(L/M) Gal(M/K)Gal(L/K)/Gal(L/M)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值