在数学分析中的数学思想

 

在数学分析中的数学思想
 
摘要 : 数学分析的研究对象是函数 , 研究方法是极限法 , 主要内容为微分学、 积分学和级数理论。本文将对数学分析内容中体现的函数思想、 极限思想、 连续思想、 导数思想 , 微分思想、 积分思想、 级数思想的产生与发展、 本质与意义、 认识与应用进行分析和探讨。
关键词 : 数学分析 ; 微积分 ; 级数 ; 数学思想
 
一、 函数思想
用函数来思考”是大数学家克莱因领导的数学教育改革运动的口号。 函数是数学中最重要的基本概念 , 也是数学分析的研究对象。 函数的思想 , 就是运用函数的方法 , 将常量视为变量、 化静为动、 化离散为连续 , 将所讨论的问题转化为函数问题并加以解决的一种思想方法。下面用实例具体分析函数思想在数学分析中的应用。
我们在证明不等式时 , 可以将不等式问题化为函数问题 , 为解决问题带来方便。
 
二、 极限思想
极限思想是近代数学的一种重要思想 , 数学分析就是以极限概念为基础、 极限理论为主要工具来研究函数的一门学科。极限的思想方法是数学分析乃至全部高等数学必不可少的一种重要方法 , 也是数学分析与初等数学的本质区别之处。 数学分析之所以能解决许多初等数学无法解决的问题 , 正是由于它采用了极限的思想方法。有时我们要确定某一个量 , 首先确定的不是这个量的本身而是它的近似值 , 而且所确定的近似值也不仅仅是一个而是一连串近似值的趋向 , 把那个量的准确值确定下来。这就是运用了极限的思想方法。
曲边梯形是由非负连续曲线 y=f(x)(a x b) 以及 x 轴、 直线 x=a x=b 所围成 , 求此曲边梯形的面积。
三、 连续的思想
数学分析的研究对象是函数 , 主要是连续函数 , 因此数学分析中的许多问题都是与连续有关的。 求函数的极限问题是数学分析的重要内容 , 如果给定的函数是连续的 , 我们应用连续函数求极限的法则 , 就可以把求极限的复杂问题转化为求函数值的问题 , 从而大大简化了求极限的过程。
四、 导数的思想
15 世纪文艺复兴以后的欧洲 , 资本主义逐渐发展 , 采矿冶炼、 机器发明、 商业交往、 枪炮制造等大量实际问题 , 给数学提出了前所未有的亟待解决的新课题。其中有两类问题导致了导数概念的产生 : 一是求变速运动的瞬时速度 , 二是求曲线上一点处的切线。这两个问题的实际意义完全不同 , 一个是物理学中的瞬时速度 , 一个是几何学中的切线斜率 , 但从数量关系来看 , 它们有着完全相同的数学结构—函数的改变量与自变量改变量之比的极限 , 可归为同一类数**算。 , 如果用函数 y=f(x) 来表示某一现象的变化规律 , 则这一类型的数**算是 :
导数思想的的应用主要表现在微分中值定理的应用及在研究函数的性态中的应用。
微分中值定理反映了导数更深刻的性质 , 也是导数应用的理论基础。 微分中值定理包括罗尔中值定理、 拉格朗日中值定理、 柯西中值定理、 泰勒中值定理。 微分中值定理的作用是联系函数与其导数的纽带 , 是建立函数与其导数关系的桥梁。 罗尔中值定理、 拉格朗日中值定理、柯西中值定理将函数与其一阶导数进行联系 , 泰勒中值定理将函数与其高阶导数进行联系。 导数在研究函数性态中的应用主要表现在讨论函数的单调性 , 求函数的极值与最值 , 讨论函数的凹凸性 , 求函数的拐点 , 求函数的渐近线 , 描绘函数的图像。
五、 微分的思想
为求物体运动的速度、变量变化的极值以及曲线的切线等问题 , 导致了微分思想的产生。在微分思想的产生和发展过程中 , 伽利略的运动观点 , 费马求切线、 求极值的方法以及巴罗把“ 求切线” 与“ 求积”问题作为互逆问题的联系 , 都为微分思想奠定了基础。有时我们需要计算函数 y=f(x), 当自变量在 x0 处有一个微小改变量 Δ x , 函数改变量 Δ y=f(x0+ Δ x)- f(x0) 的大小 , 但是 Δ y 往往是 Δ x 的一个较复杂的函数 , 要精确计算它是困难的 , 甚至是不可能的 ; 并且我们在理论研究和实际应用中 , 有时只需了解 Δ y 的近似值就可以了。 数学家们把解决上述问题的出路放在将 Δ y=f(x0+ Δ x)- f(x0) 线性化 , Δ x 的线性函数来近似代替它 , 这就是引入微分的基本想法。微分的几何意义是函数 y=f(x) x0 点的微分等于曲线 y=f(x) 在点 (x0, f(x0)) 处的切线纵坐标的增量。导数与微分是微分学中的两个最基本的概念 , 它们之间的联系与区别为 : 一方面 , 可导与可微是等价的 , 若求出了函数在一点的导数 , 再乘以 dx 即得该点的微分 ; 若求出了函数在一点的微分 , 再除以 dx,
即得该点的导数 , 因此导数又称为微商。 另一方面 , 从她们的来源和结构来看 , 导数作为有确定结构的差商的极限 , 比微分的概念更为基础 ; 但又由于一个导数可以表示为两个微分之商 , 因此在分析运算中 , 微分表现出更大的灵活性与适应性。微分在近似计算上应用较为广泛。
5 有一批半径为 1cm 的球 , 为了降低球的表面粗糙度 , 要镀上一层铜 , 厚度定为 0.01cm 。每只球需用铜多少克 ( 铜的密度是 8.9g/cm3) ?
六、 积分的思想
为了解决求物体运动的路程、 变力作功以及由曲线围成的面积和由曲面围成的体积等问题 , 导致了积分的产生。 积分思想源远流长 , 古希腊德谟克利特的“ 数学原子论” 阿基米德的“ 穷竭法” 刘徽的“ 割圆术” 都是积分思想的雏形 , 并且用这些方法求出了不少几何形体的面积和体积 ; 然而这些古代方法都建立在特殊的技巧之上 , 不具有一般性 , 也不是以严密的理论为基础的。 17 世纪牛顿与莱布尼兹揭示了微分与积分的内在联系—微积分基本定理 , 从而产生了微积分 , 使数学从常量数学跨入变量数学 , 开创了数学发展的新纪元。定积分的应用表现在用微元法来建立所求积分表达式 , 主要是在几何和物理方面的应用 : 求平面图形的面积 , 求已知截面面积的立体的体积 , 求旋转体的体积 , 求曲线的弧长 , 求旋转曲面的面积 , 求变力所做的功等等。
 
七、 级数的思想
级数理论是数学分析的重要组成部分 , 是研究函数的重要工具 , 级数是产生新函数的重要方法 , 同时又是对已知函数表示、 逼近的有效方法 , 在近似计算中发挥着重要作用。泰勒公式是用有限项的多项式近似表示函数 , 它对于研究函数的局部逼近和整体有着重要意义 , 在此基础上和一定条件下 , 我们可以用无穷多项的多项式来准确地表示一个函数 , 这就是幂级数 , 利用函数的幂级数展开式 , 对研究函数的性质和计算都有着非常重要的作用。利用级数理论可以证明数列的极限等于 0
参考文献
[ 1] 盛集明等, 高等数学[M] , 武汉: 华中科技大学出版社, 2004 年 8月.
[ 2]明清河, 数学分析的思想和方法[M] , 山东: 山东大学出版社, 2004年 7 月.
[3]孔君香,数学分析中体现的数学思想[M],湖北,Science Information,2007年第四期128~129页.
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数学分析的重要定理 作者:杨艳萍,明清河 著 出版时间:2015年版 内容简介 《数学分析的重要定理》是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析的重要定理总结和归纳为微积分基本定理、微分值定理、积分值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。   《数学分析的重要定理》从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。   《数学分析的重要定理》可供数学及相关专业的本科生、研究生和从事数学分析的教学研究人员参考。 目录 第1章 微积分基本定理 1.1 微积分基本定理的历史演变 1.1.1 微积分基本定理的发现阶段 1.1.2 微积分基本定理的创立阶段 1.1.3 微积分基本定理的完善阶段 1.2 微积分基本定理的内容与证明 1.2.1 微积分第一基本定理及其证明 1.2.2 微积分第二基本定理及其证明 1.3 微积分基本定理的相关内容分析 1.3.1 微积分基本定理的条件与结论 1.3.2 微积分基本定理的意义与作用 1.3.3 两种形式微积分基本定理之间的关系 1.3.4 微积分基本定理与其他定理之间的关系 1.4 微积分基本定理的应用 1.4.1 求含有变限积分函数的导数 1.4.2 求含有变限积分函数的极限 1.4.3 求含有变限积分的函数方程的解 1.4.4 讨论含变限积分函数的性质 1.4.5 构造变限积分辅助函数,证明等式与不等式 1.4.6 利用微积分基本定理证明数学分析的重要定理 1.4.7 利用牛顿莱布尼茨公式计算定积分 1.5 微积分基本定理的推广 1.5.1 原函数存在定理的推广 1.5.2 变限积分求导公式的推广 1.5.3 牛顿莱布尼茨公式的推广 参考文献 第2章 微分值定理 2.1 微分值定理的历史演变 2.1.1 对微分值定理的初步认识 2.1.2 罗尔值定理的演变 2.1.3 拉格朗日值定理的演变 2.1.4 柯西值定理的演变 2.1.5 泰勒值定理的演变 2.2 微分值定理的内容与证明 2.2.1 罗尔值定理及其证明 2.2.2 拉格朗日值定理及其证明 2.2.3 柯西值定理及其证明 2.2.4 泰勒值定理及其证明 2.3 微分值定理的相关内容分析 2.3.1 微分值定理的背景 2.3.2 微分值定理的条件与结论 2.3.3 微分值定理的意义与作用 2.3.4 四个微分值定理之间的关系 2.3.5 微分值定理的值点 2.4 微分值定理的应用 2.4.1 罗尔值定理的应用 2.4.2 拉格朗日值定理的应用 2.4.3 柯西值定理的应用 2.4.4 泰勒值定理的应用 2.5 微分值定理的推广 2.5.1 罗尔值定理的推广 2.5.2 拉格朗日值定理的推广 2.5.3 柯西值定理的推广 参考文献 第3章 积分值定理 3.1 积分值定理的历史演变 3.2 积分值定理的内容与证明 3.2.1 积分第一值定理及其证明 3.2.2 推广的积分第一值定理及其证明 3.2.3 积分第二值定理及其证明 3.2.4 加强条件的积分第二值定理及其证明 3.3 积分值定理的相关内容分析 3.3.1 积分值定理的几何意义 3.3.2 积分值定理的条件与结论 3.3.3 微分值定理与积分值定理之间的关系 3.3.4 积分值定理的值点 3.4 积分值定理的应用 3.4.1 估计某些定积分的值 3.4.2 求含有积分的极限 3.4.3 证明含有积分的不等式 3.4.4 证明含有值点的积分问题 3.4.5 讨论含积分函数的收敛性与单调性 3.5 积分值定理的改进与推广 3.5.1 积分值定理的改进 3.5.2 积分第一值定理的推广 3.5.3 积分第二值定理的推广 参考文献 第4章 积分关系定理 4.1 积分关系定理的历史演变 4.2 积分关系定理的内容与证明 4.2.1 格林公式及其证明 4.2.2 高斯公式及其证明 4.2.3 斯托克斯公式及其证明 4.3 积分关系定理的相关内容分析 4.3.1 各类积分的起源与几何意义 4.3.2 各类积分之间的关系 4.3.3 各类积分之间的转化 4.3.4 四个积分公式之间的关系 4.3.5 四个积分公式的统一形式 4.4 积分关系定理的应用 4.4.1 格林公式的应用 4.4.2 高斯公式的应用 4.4.3 斯托克斯公式的应用 4.5 积分关系定理的推广 4.5.1 格林公式的推广 4.5.2 高斯公式的推广 4.5.3 斯托克斯公式的推广 参考文献 第5章 极限关系定理 5.1 海涅定理的历史演变 5.2 海涅定理的内容与证明 5.3 海涅定理的相关内容分析 5.3.1 海涅定理的条件与结论 5.3.2 海涅定理的意义与作用 5.4 海涅定理的应用 5.4.1 证明函数极限不存在 5.4.2 证明函数极限的性质 5.4.3 求数列的极限 5.4.4 判断级数的敛散性 5.4.5 判断函数的可导性 5.4.6 证明函数为常量函数 5.5 海涅定理的推广 5.5.1 把任意数列 推广为单调数列 5.5.2 把 存在极限 推广为非正常极限 5.5.3 把函数极限存在推广为函数连续及单侧连续 5.5.4 把任意数列 推广为有理(无理)数列 5.5.5 把函数极限存在推广为含参变量广义积分一致收敛 参考文献 第6章 闭区间上连续函数的性质定理 6.1 闭区间上连续函数性质定理的历史演变 6.2 闭区间上连续函数性质定理的内容与证明 6.2.1 有界性定理及其证明 6.2.2 最值性定理及其证明 6.2.3 零点存在定理及其证明 6.2.4 介值性定理及其证明 6.2.5 一致连续性定理及其证明 6.3 闭区间上连续函数性质定理的相关内容分析 6.3.1 闭区间上连续函数性质定理的理解 6.3.2 闭区间上连续函数性质定理的几何意义 6.3.3 闭区间上连续函数性质定理的条件与结论 6.3.4 闭区间上连续函数性质定理的统一表述 6.4 闭区间上连续函数性质定理的推广 6.4.1 有界性定理的推广 6.4.2 最值性定理的推广 6.4.3 零点存在定理的推广 6.4.4 介值性定理的推广 6.4.5 一致连续性定理的推广 6.5 闭区间上连续函数性质定理的应用 6.5.1 有界性定理的应用 6.5.2 最值性定理的应用 6.5.3 零点存在定理的应用 6.5.4 介值性定理的应用 6.5.5 一致连续性定理的应用 参考文献 第7章 实数连续性(完备性)定理 7.1 实数连续性定理的历史演变 7.2 实数连续性定理的内容与证明 7.2.1 确界存在定理及其证明 7.2.2 单调有界定理及其证明 7.2.3 柯西收敛准则及其证明 7.2.4 区间套定理及其证明 7.2.5 聚点定理及其证明 7.2.6 致密性定理及其证明 7.2.7 有限覆盖定理及其证明 7.3 实数连续性定理的相关内容分析 7.3.1 实数连续性定理的条件与结论 7.3.2 实数连续性定理的内在联系及等价性 7.3.3 实数连续性定理所提供的数学方法 7.3.4 实数连续性定理所提供的工具 7.4 实数连续性定理的推广 7.4.1 确界存在定理的推广 7.4.2 单调有界定理的推广 7.4.3 柯西收敛准则的推广 7.4.4 区间套定理的推广 7.4.5 聚点定理的推广 7.4.6 致密性定理的推广 7.4.7 有限覆盖定理的推广 7.5 实数连续性定理的应用 7.5.1 确界存在定理的应用 7.5.2 单调有界定理的应用 7.5.3 柯西收敛准则的应用 7.5.4 区间套定理的应用 7.5.5 聚点定理的应用 7.5.6 致密性定理的应用 7.5.7 有限覆盖定理的应用 参考文献 总参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值