MAPPO:The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games

论文代码

  1. 论文链接:https://arxiv.org/abs/2103.01955
  2. 代码地址:https://github.com/marlbenchmark/on-policy
  3. 代码讲解:

1.研究动机是什么

  早期的研究表明,在连续控制任务中,on-policy算法TRPO优于off-policy算法DDPG。然而,在最近的off-policy方法SAC和Rainbow中认为,即使是最新的PG算法PPO,采样效率也明显低于off-policy方法。

  在许多单智体领域(MuJoCo,Atari和机器人系统),目前off-policy方法在样本复杂度上是SOTA的。

  在多智能体领域也有类似的结论:多智体PG方法COMA在MPE和SMAC上的表现均明显优于MADDPG和QMix。

  尽管IPPO可以在一些特定的hard SMAC地图上表现出高成功率,但原因尚不清楚,而且IPPO的整体表现仍然比QMix差得多。

  作者重新检验了这些关于PPO的结论,并表明MAPPO能够在3个主流的MARL合作试验台上实现SOTA性能。

  单智体技巧:input normalization, value clipping, orthogonal initialization, and gradient clipping ,regularization(文中用normalization layer),离散任务使用soft trust-region penalty and discretizing the action space避免连续控制的局部最优问题,以上多智体领域同样适用,文中作者都用了。

2.主要解决了什么问题

3.所提方法是什么

  POMDP定义为 ⟨ S , A , O , R , P , n , γ ⟩ \langle\mathcal{S}, \mathcal{A}, O, R, P, n, \gamma\rangle S,A,O,R,P,n,γ S \mathcal{S} S是状态空间, A \mathcal{A} A是智能体共享动作空间, o i = O ( s ; i ) o_{i}=O(s ; i) oi=O(s;i)是每个智能体局部观测空间, P ( s ′ ∣ s , A ) P\left(s^{\prime} \mid s, A\right) P(s

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值