MAPPO
论文代码
1.研究动机是什么
早期的研究表明,在连续控制任务中,on-policy算法TRPO优于off-policy算法DDPG。然而,在最近的off-policy方法SAC和Rainbow中认为,即使是最新的PG算法PPO,采样效率也明显低于off-policy方法。
在许多单智体领域(MuJoCo,Atari和机器人系统),目前off-policy方法在样本复杂度上是SOTA的。
在多智能体领域也有类似的结论:多智体PG方法COMA在MPE和SMAC上的表现均明显优于MADDPG和QMix。
尽管IPPO可以在一些特定的hard SMAC地图上表现出高成功率,但原因尚不清楚,而且IPPO的整体表现仍然比QMix差得多。
作者重新检验了这些关于PPO的结论,并表明MAPPO能够在3个主流的MARL合作试验台上实现SOTA性能。
单智体技巧:input normalization, value clipping, orthogonal initialization, and gradient clipping ,regularization(文中用normalization layer),离散任务使用soft trust-region penalty and discretizing the action space避免连续控制的局部最优问题,以上多智体领域同样适用,文中作者都用了。
2.主要解决了什么问题
3.所提方法是什么
POMDP定义为 ⟨ S , A , O , R , P , n , γ ⟩ \langle\mathcal{S}, \mathcal{A}, O, R, P, n, \gamma\rangle ⟨S,A,O,R,P,n,γ⟩, S \mathcal{S} S是状态空间, A \mathcal{A} A是智能体共享动作空间, o i = O ( s ; i ) o_{i}=O(s ; i) oi=O(s;i)是每个智能体局部观测空间, P ( s ′ ∣ s , A ) P\left(s^{\prime} \mid s, A\right) P(s′