图像分割常用评价指标

图像分割常用评价指标

最近在做实验的时候,用到了 Dice coefficientF1-score 评价指标,在训练中发现这两个评价指标的结果始终都是一样的,有点疑惑。于是去看原理,最后发现这两个评价指标其实是一样的,于是打算将推理过程记录一下,以便以后加深印象。

Dice coefficient

Dice coefficient 通常用于计算两个样本的相似度,取值范围为 [0, 1]。
d i c e = 2 ∣ X ∩ Y ∣ ∣ X ∣ + ∣ Y ∣ dice = \frac{2\left | X \cap Y \right | }{\left | X \right | + \left | Y \right |} dice=X+Y2XY
示意图如下

在这里插入图片描述

上图中黄色区域内为 TP , 两个红色区域加起来为 FP + TN,所以 Dice coefficient 计算公式如下:
d i c e = 2 T P 2 T P + F P + F N dice = \frac{ 2TP }{2TP + FP + FN} dice=2TP+FP+FN2TP

F1-Score

F1-Score 也是用来衡量分割精度的一个指标,同时考虑了准确率和召回率。
F 1 = 2 P R P + R F1 = \frac{ 2PR }{P+R} F1=P+R2PR
其中准确率和召回率如下:
P = T P T P + F P P = \frac{ TP }{TP+FP} P=TP+FPTP

R = T P T P + F N R = \frac{ TP }{TP+FN} R=TP+FNTP

将准确率 P 和召回率 R 代入 F1 中,结果如下:
F 1 = 2 T P 2 T P + F P + F N F1 = \frac{ 2TP }{2TP + FP + FN} F1=2TP+FP+FN2TP
由此可以得出,Dice coefficientF1-Score 在数值上是一致的,所以不需要同时使用 Dice coefficientF1-Score 作为实验结果的评价指标。

mIoU

mIoU 的含义是真实图像与预测图像的交并比,常用于图像分割、分类任务的结果评价。
m I o U = ∣ X ∩ Y ∣ ∣ X ∪ Y ∣ = T P T P + F P + F N mIoU = \frac{\left | X \cap Y \right | }{\left | X \cup Y \right |} = \frac{TP}{TP+FP+FN} mIoU=XYXY=TP+FP+FNTP

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值