图像分割常用评价指标
最近在做实验的时候,用到了 Dice coefficient 和 F1-score 评价指标,在训练中发现这两个评价指标的结果始终都是一样的,有点疑惑。于是去看原理,最后发现这两个评价指标其实是一样的,于是打算将推理过程记录一下,以便以后加深印象。
Dice coefficient
Dice coefficient 通常用于计算两个样本的相似度,取值范围为 [0, 1]。
d
i
c
e
=
2
∣
X
∩
Y
∣
∣
X
∣
+
∣
Y
∣
dice = \frac{2\left | X \cap Y \right | }{\left | X \right | + \left | Y \right |}
dice=∣X∣+∣Y∣2∣X∩Y∣
示意图如下
上图中黄色区域内为 TP , 两个红色区域加起来为 FP + TN,所以 Dice coefficient 计算公式如下:
d
i
c
e
=
2
T
P
2
T
P
+
F
P
+
F
N
dice = \frac{ 2TP }{2TP + FP + FN}
dice=2TP+FP+FN2TP
F1-Score
F1-Score 也是用来衡量分割精度的一个指标,同时考虑了准确率和召回率。
F
1
=
2
P
R
P
+
R
F1 = \frac{ 2PR }{P+R}
F1=P+R2PR
其中准确率和召回率如下:
P
=
T
P
T
P
+
F
P
P = \frac{ TP }{TP+FP}
P=TP+FPTP
R = T P T P + F N R = \frac{ TP }{TP+FN} R=TP+FNTP
将准确率 P 和召回率 R 代入 F1 中,结果如下:
F
1
=
2
T
P
2
T
P
+
F
P
+
F
N
F1 = \frac{ 2TP }{2TP + FP + FN}
F1=2TP+FP+FN2TP
由此可以得出,Dice coefficient 和 F1-Score 在数值上是一致的,所以不需要同时使用 Dice coefficient 和 F1-Score 作为实验结果的评价指标。
mIoU
mIoU 的含义是真实图像与预测图像的交并比,常用于图像分割、分类任务的结果评价。
m
I
o
U
=
∣
X
∩
Y
∣
∣
X
∪
Y
∣
=
T
P
T
P
+
F
P
+
F
N
mIoU = \frac{\left | X \cap Y \right | }{\left | X \cup Y \right |} = \frac{TP}{TP+FP+FN}
mIoU=∣X∪Y∣∣X∩Y∣=TP+FP+FNTP