图像分割的评价指标

本文详细介绍了图像分割领域的四个关键评价指标:像素准确性、IoU(Intersection over Union)、Mean IoU(MIoU)以及Dice Score。通过混淆矩阵的概念,阐述了这些指标的计算方式和意义,特别是对于道路线检测等应用场景的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为之前研究了下图像分割的评分指标, 主要应用在道路线检测方面上,所以把这些写下来:
图像分割的评分标准主要有以下四种:

  1. Pixel accurancy (像素准确性)
  2. IoU (Intersection over Union)
  3. Mean IoU
  4. Dice score

在解释以上的评价指标之前, 我们需要先了解混淆矩阵, 因为以上的评价指标是跟混淆矩阵有关, 或者可以说是由混淆矩阵引出。

混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。 [1] 在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类相比较计算的。

混淆矩阵的每一列代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。每一列中的数值表示真实数据被预测为该类的数目:如下图,第一行第一列中的43表示有43个实际归属第一类的实例被预测为第一类,同理,第一行第二列的2表示有2个实际归属为第一类的实例被错误预测为第二类。
下面是一个简单的例子:
如果神经网络系统被训练去识别和区分狗跟猫,那么混淆矩阵将汇总测试算法的结果以供进一步检查。

我们假设有13种动物的样本-8只猫和5只狗

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值