有N个不同的正整数数x1, x2, ... xN 排成一排,我们可以从左边或右边去掉连续的i个数(只能从两边删除数),1<=i<=n,剩下N-i个数,再把剩下的数按以上操作处理,直到所有的数都被删除为止。每次操作都有一个操作价值,比如现在要删除从i位置到k位置上的所有的数。操作价值为|xi – xk|*(k-i+1),如果只去掉一个数,操作价值为这个数的值。任务:怎样操作,使得删完所有的数之后,得到的价值总和最大。
输入
第一行为一个正整数N,第二行有N个用空格隔开的N个不同的正整数。 3<=N<=100,N个操作数为1..1000 之间的整数。
输出
输出文件remove.out 包含一个正整数,为操作的最大值
样例输入
6 54 29 196 21 133 118
样例输出
768
#include <iostream>
#include<cmath>
using namespace std;
int num[501];
int f[501][501];
int main()
{
int n;
cin >> n;
for(int i=1; i<=n; i++)
{
cin >> num[i];
f[i][1] = num[i];
}
for(int j=2; j<=n; j++)
{
for(int i=1; i<=n-j+1; i++)
{
f[i][j] = j * fabs(num[i]-num[i+j-1]);
for(int k=1; k<j; k++)
{
f[i][j] = max(f[i][j], f[i][k]+f[k+i][j-k]);
}
}
}
int ans = 0;
for(int i=1; i<=n; i++)
ans = max(ans, f[i][n]);
cout << ans ;
return 0;
}
/*
6
54 29 196 21 133 118
*/
///i~k: |x[i]-x[k]|*(k-i+1) 一个数 该数的值