keep forward, go, go, go

主要用于自己备忘,写的不太好,请轻拍,有疑问请留言,共同讨论交流^_^

分类时为什么都选择one hot编码

这里可以做一个思考啊,分类时,一般都会选择把类别用one hot进行编码,
比如共有5个类,那么就有5个编码
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 1 1]
[0 0 0 1 0]
[0 0 0 0 1]

这是为什么呢?为什么不直接用1,2,3,4,5来表示5个类别呢?

个人觉得,一个很重要的原因在于计算loss时的问题。loss一般用距离来表示,
如果用1~5来表示,那么1和2的距离时1,而1和5的距离时4,但是按道理1和2、1和5的距离应该一样。
如果用one hot编码表示,那么1和2的距离跟1和5的距离时一样的。

当然,这里也可以说,通过判断,1和5是不是相等来决定距离,但是如果在神经网络里面,计算导数的时候,就是问题了。
阅读更多

扫码向博主提问

去开通我的Chat快问

b876144622

非学,无以致疑;非问,无以广识
版权声明: https://blog.csdn.net/b876144622/article/details/79962672
文章标签: 分类 onehot
个人分类: machine learning
上一篇深度学习,提高分类精度
下一篇提前预测类问题的思路
想对作者说点什么? 我来说一句
关闭
关闭