计数器限:
if (GET(key)){ // 1.1自增后判断是否大于最大值,并返回结果 if (INCR(key) > maxPermit){ return false ; } return true ; } //不存在key,则初始化key SET(KEY, 1 ); EXPIRE(KEY, 3 ); return true ; |
时间窗口:
/** * 限流方法(滑动时间算法);基于zset实现,每个请求为key的一份数据,score为请求时间,判断是否超限即看限定score范围内数据的count * @param key 限流标识 * @param period 限流时间范围(单位:秒) * @param maxCount 最大运行访问次数 * @return */ private boolean isPeriodLimiting() { long currTs = System.currentTimeMillis(); // 当前时间戳 // 删除非时间段内的请求数据(清除老访问数据,比如 period=60 时,标识清除 60s 以前的请求记录) zremrangeByScore(key, 0 , currTs - preTs); // 当前请求次数 long currCount = zcard(key); if (currCount >= maxCount) { // 超过最大请求次数,限流 return false ; } // 时间范围内请求记录 +1 zadd(key, currTs, "" + currTs); return true ; } |
信号量:
信号量用于临界资源访问并发数的控制, 有释放返回操作, 不关心时间;
线路并发
RPermitExpirableSemaphore semaphore = redisson.getPermitExpirableSemaphore( "semaphore" ); semaphore.trySetPermits( 10 ); try { //获取许可等待时间,许可超时自动释放时间 String semId = semaphore.tryAcquire(20L, 5 * 60 * 1000L, TimeUnit.MILLISECONDS); if (Objects.nonNull(semId)) { // do(); semaphore.tryRelease(semId); } } catch (InterruptedException e) { e.printStackTrace(); } |
漏桶算法:
构造固定容量的桶(请求上限),水即是请求,有水流进来也有水流出去,我们可以通过控制水流出的速率,用来对调用者频率进行限流,保证流量平滑自己不被压垮。
漏桶算法的实现步骤是,先声明一个队列用来保存请求,这个队列相当于漏斗,队列满了之后可以队新请求进行限制,另外声明一个线程定期从任务队列中处理请求。
令牌桶算法:
程序以某种恒定的速度生成令牌,并存入令牌桶中,而每个请求需要先获取令牌才能执行,如果没有获取到令牌的请求可以选择等待或者放弃执行
Redis 4.0 版本中提供的 Redis-Cell 模块,该模块使用的是该算法;
Redission提供的RateLimit();
Guava单机RateLimit();
RRateLimiter rRateLimiter = redissonClient.getRateLimiter( "limiter" ); //多实例公用,每1s 5个令牌 rRateLimiter.trySetRate(RateType.OVERALL, 5 , 1 , RateIntervalUnit.SECONDS); if (rRateLimiter.tryAcquire()) { // do(); } |
锁:
