最短路套题

本文探讨了三个信息技术问题:利用Dijkstra算法解决最短路径的热浪问题,结合权重的路径优化在昂贵聘礼问题中的应用,以及使用二分搜索和广度优先搜索解决通信线路连接问题。通过实例展示了如何灵活运用算法来解决实际场景中的复杂路径问题。
摘要由CSDN通过智能技术生成

1129. 热浪

题目链接在这里插入图片描述
在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-6;
typedef long long ll;
const int M = 1e6 + 10;
#define maxn 3000
#define maxn1 20000
int n, m, start, ending, v, s, num;
int dis[maxn], head[maxn];  // dis数组表示起点到某点的最短路大小
struct Edge {
    int v, w, nxt;
} edge[maxn1];
inline void ct(int u, int v, int w)  //链式前向星存图。
{
    edge[++num].v = v;
    edge[num].w = w;
    edge[num].nxt = head[u];
    head[u] = num;
}
struct node {
    int x, y;
    bool operator<(
        const node& a) const  //堆优化重载运算符,使大根堆变成小根堆。
    {
        return y > a.y;
    }
};
void dijkstra(int k) {
    memset(dis, 0x3f, sizeof(dis));  //初始化。
    dis[k] = 0;
    priority_queue<node> q;
    q.push((node){k, 0});
    node a;
    while (!q.empty())  // dijkstra经典套路操作。
    {
        a = q.top();  //用这个node类型变量提取队首元素。
        int u = a.x, d = a.y;
        q.pop();
        if (d != dis[u])
            continue;  //一个小优化。
        for (int i = head[u]; i; i = edge[i].nxt) {
            int v = edge[i].v;
            if ((dis[v] > dis[u] + edge[i].w)) {
                dis[v] = dis[u] + edge[i].w;
                q.push((node){v, dis[v]});
            }
        }
    }
}
int main() {
    scanf("%d%d%d%d", &n, &m, &start, &ending);
    for (int i = 1, u, v, w; i <= m; ++i) {
        scanf("%d%d%d", &u, &v, &w);
        ct(u, v, w);  //无向边存两遍。
        ct(v, u, w);
    }
    dijkstra(start);
    cout << dis[ending] << endl;
    return 0;
}

题解:没什么好说的,就最短路的板子题目,套个dij的板子就可以了

903. 昂贵的聘礼

题目链接
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//这个是代码1
#include <bits/stdc++.h>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int n, m;
int w[N][N], level[N];
int dist[N];
bool st[N];

int dijkstra(int down, int up) {
    memset(dist, 0x3f, sizeof(dist));
    memset(st, 0, sizeof(st));
    dist[0] = 0;
    for (int i = 1; i <= n + 1; ++i) {
        int t = -1;
        for (int j = 0; j <= n; ++j)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        st[t] = true;
        for (int j = 1; j <= n; ++j)
            if (level[j] >= down && level[j] <= up)
                dist[j] = min(dist[j], dist[t] + w[t][j]);
    }
    return dist[1];
}

int main() {
    cin >> m >> n;
    memset(w, 0x3f, sizeof(w));
    for (int i = 1; i <= n; ++i)
        w[i][i] = 0;
    for (int i = 1; i <= n; ++i) {
        int price, cnt;
        cin >> price >> level[i] >> cnt;
        w[0][i] = min(w[0][i], price);
        while (cnt--) {
            int id, cost;
            cin >> id >> cost;
            w[id][i] = min(w[id][i], cost);
        }
    }
    int res = INF;
    for (int i = level[1] - m; i <= level[1]; ++i)
        res = min(res, dijkstra(i, i + m));
    cout << res << endl;
    return 0;
}

//这个是代码2
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e2 + 10, M = 1e4 + 10;

int n, m, s, num, k;
int dis[N], head[N], d[N], p[N];
struct Edge {
    int v, w, nxt;
} edge[M];
inline void ct(int u, int v, int w)  //链式前向星存图。
{
    edge[++num].v = v;
    edge[num].w = w;
    edge[num].nxt = head[u];
    head[u] = num;
}
struct node {
    int x, y;
    bool operator<(
        const node& a) const  //堆优化重载运算符,使大根堆变成小根堆。
    {
        return y > a.y;
    }
};
void dijkstra(int l, int r) {
    memset(dis, 0x3f, sizeof(dis));  //初始化。
    dis[1] = d[1];
    priority_queue<node> q;
    q.push((node){1, d[1]});
    node a;
    while (!q.empty())  // dijkstra经典套路操作。
    {
        a = q.top();  //用这个node类型变量提取队首元素。
        int u = a.x, c = a.y;
        q.pop();
        if (c != dis[u])
            continue;  //一个小优化。
        for (int i = head[u]; i; i = edge[i].nxt) {
            int v = edge[i].v;
            if (p[v] < l || p[v] > r)
                continue;
            if ((dis[v] > dis[u] + d[v] - d[u] + edge[i].w)) {
                dis[v] = dis[u] + d[v] - d[u] + edge[i].w;
                q.push((node){v, dis[v]});
            }
        }
    }
}
int main() {
    scanf("%d%d", &k, &n);
    for (int i = 1, u, v, w; i <= n; ++i) {
        scanf("%d%d%d", &d[i], &p[i], &m);
        for (int j = 0; j < m; ++j) {
            scanf("%d%d", &v, &w);
            ct(i, v, w);
        }
    }

    int minn = 0x7fffffff;
    for (int i = p[1] - k; i <= p[1]; ++i) {
        dijkstra(i, i + k);
        for (int i = 1; i <= n; ++i) {
            minn = min(minn, dis[i]);
        }
    }

    cout << minn << endl;
    return 0;
}

题解:是最短路的一点点变形,加上了每个节点的权值,代码1是y总的,代码2是我写的,就是在原有最短路基础上加上对每个节点权值的比较,最后枚举等级区间就可以了。y总的写法是构造出一个虚拟的起点0,从起点0向每一个点建立一条路径,路径权值就为该节点的权值,求从0点到1点的最短路径即可,同样要枚举等级区间。

340. 通信线路

题目链接
在这里插入图片描述
在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1010, M = 20010;

int n, m, k;
int h[N], e[M], w[M], ne[M], idx;
deque<int> q;
int dist[N];
bool st[N];

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

bool check(int bound) {
    memset(st, 0, sizeof(st));
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    q.push_back(1);

    while (q.size()) {
        int t = q.front();
        q.pop_front();

        if (st[t])
            continue;
        st[t] = true;

        for (int i = h[t]; ~i; i = ne[i]) {
            int j = e[i], v = w[i] > bound;
            if (dist[j] > dist[t] + v) {
                dist[j] = dist[t] + v;
                if (!v)
                    q.push_front(j);
                else
                    q.push_back(j);
            }
        }
    }
    return dist[n] <= k;
}
int main() {
    cin >> n >> m >> k;

    memset(h, -1, sizeof(h));
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c), add(b, a, c);
    }
    int l = 0, r = 1e6 + 1;
    while (l < r) {
        int mid = l + r >> 1;
        if (check(mid))
            r = mid;
        else
            l = mid + 1;
    }
    if (r == 1e6 + 1)
        r = -1;
    cout << r << endl;
    return 0;
}

题解:二分+双端队列广搜,二分答案,然后对每个答案进行搜索,看看是否能在把k条电缆花费变成0的情况下得出答案。这个二分枚举的区间之所以要从0开始,是因为有可能全部电缆花费都被变成了0,于是就不需要花费便能连通,之所以右端点是1e6+1,是因为二分结束的时候,如果r = 1e6+1,便能轻易得出不能连通的结果,但如果右端点只使用1e6,如果r = 1e6,便不能轻易区分出究竟是不能连通导致结果是1e6还是因为可以连通并且结果就是1e6

342. 道路与航线

题目链接
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 25010, M = 150010, INF = 0x3f3f3f3f;
int n, mr, mp, S;
int v[M], w[M], ne[M], h[M], cnt;
int id[N], bcnt;
vector<int> block[N];
int din[N];
int dist[N];
queue<int> q;
bool st[N];
void add(int a, int b, int c) {
    v[++cnt] = b, w[cnt] = c, ne[cnt] = h[a], h[a] = cnt;
}
void dfs(int u, int bid) {
    id[u] = bid;
    block[bid].push_back(u);
    for (int i = h[u]; i; i = ne[i]) {
        int j = v[i];
        if (!id[j])
            dfs(j, bid);
    }
}
void dijkstra(int u) {
    priority_queue<PII, vector<PII>, greater<PII> > heap;
    for (auto ver : block[u]) {
        heap.push({dist[ver], ver});
    }
    while (heap.size()) {
        auto k = heap.top();
        heap.pop();
        int ver = k.y;
        if (st[ver])
            continue;
        st[ver] = true;
        for (int i = h[ver]; i; i = ne[i]) {
            int j = v[i];
            if (dist[j] > dist[ver] + w[i]) {
                dist[j] = dist[ver] + w[i];
                if (id[j] == id[ver])
                    heap.push({dist[j], j});
            }
            if (id[j] != id[ver] && --din[id[j]] == 0)
                q.push(id[j]);
        }
    }
}
void topsort() {
    memset(dist, 0x3f, sizeof(dist));
    dist[S] = 0;
    for (int i = 1; i <= bcnt; ++i) {
        if (!din[i])
            q.push(i);
    }
    while (q.size()) {
        int t = q.front();
        q.pop();
        dijkstra(t);
    }
}

int main() {
    scanf("%d%d%d%d", &n, &mr, &mp, &S);
    while (mr--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c), add(b, a, c);
    }
    for (int i = 1; i <= n; ++i) {
        if (!id[i])
            dfs(i, ++bcnt);
    }
    while (mp--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
        din[id[b]]++;
    }
    topsort();
    for (int i = 1; i <= n; ++i) {
        if (dist[i] > INF / 2)
            puts("NO PATH");
        else
            printf("%d\n", dist[i]);
    }
    return 0;
}

题解:这题是拓扑排序+dijkstra算法,因为题目保证了航线的就不会有负数环,所以非常符合拓扑排序的做法,因为题目保证了不会在航线之间有负数环,所以整个点图可以划分为几个大区域,把每个区域看做是一个点进行拓扑排序,在区域里面进行dijkstra算法求最短路,如此便可以求到其他点的最短路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值