arc084_b (思维+最短路)(好题)

题目

传送门

D - Small Multiple
Time limit : 2sec / Memory limit : 256MB

Problem Statement

Find the smallest possible sum of the digits in the decimal notation of a positive multiple of K.

Constraints

2≤K≤105
K is an integer.

Input

Input is given from Standard Input in the following format:
K

Output

Print the smallest possible sum of the digits in the decimal notation of a positive multiple of K.
Samples

InputOutputStatement
6312=6×2 yields the smallest sum
41511111=41×271 yields the smallest sum
7999236

分析

  • 题意就是给一个数 k ,问他的正整数倍数中,(十进制下)每一位的和最小是多少。
  • 这题也是一道通过建图求最短路的思维好题。
  • 新建一个图,共 k 个节点,代表 模k 得到的值。
  • 可以先建好一个图,建边的依据是已知一个数x%k=p,那么在 x 后面再加一位数得到 y ,可以明确地知道 y%k 的值,于是就得到了一个图,每条边代表往后加一位,边权就是这一位的数字。
  • 跑一边最短路,其中 dis[i] 意义就是模 k 余 i 的数中每一位的和最少是多少,开始 1~9 都加入队列(它们为第一位都可以),跑一次 SPFA ,最后输出 dis[0] 即可。

程序

#include <cstdio>
#include <cstring>
#define For(x) for(int h=head[x],o=V[h],w=W[h]; h; o=V[h=to[h]],w=W[h])
using namespace std;
int head[100005],to[1000005],V[1000005],W[1000005],num;
int q[10000005],l,r,f[100005],dis[100005];
int k;
void Add(int x,int y,int z){
    to[++num]=head[x],head[x]=num,V[num]=y,W[num]=z;
}

void SPFA(){
    memset(dis,0x7f,sizeof(dis));
    for (int i=1; i<10; i++) q[++r]=dis[i]=f[i]=i;      //起始位(及最终数的最高位)是 1~9 都可以,都要加入队列中 
    for (l=1; l<=r; l++){
        For(q[l]) if (dis[o]>dis[q[l]]+w){
            dis[o]=dis[q[l]]+w;
            if (!f[o]){
                f[o]=1;
                q[++r]=o;
            }
        }
        f[q[l]]=0;
    }
}

void debug(){
    for (int i=0; i<k; i++){
        printf("%d\t",i);
        For(i) printf("(%d %d) ",o,w);
        puts("");
    }
    puts("");
}

int main(){
    scanf("%d",&k);
    for (int i=1; i<k; i++)
        for (int j=0; j<10; j++)
            Add(i,(i*10+j)%k,j);        //每个模数往后加一个位(0~9都可),可以形成一个到另一个模数的边 
    SPFA();
    printf("%d",dis[0]);                //通过重重操作,最后得到模数为 0 (k的正整数倍)的路径长就是每一位的和 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值