主要应用在研究某些现象发生的概率p,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率 p与那些因素有关。显然作为概率值,一定有0<p<1,因此很难用线性模型描述概率p与自变量的关系,另外如果p接近两个极端值,此时一般方法难以较好地反映p的微小变化。为此在构建p与自变量关系的模型时,变换一下思路,不直接研究p,而是研究p的一个严格单调函数G(p) ,并要求G(p)在p接近两端值时对其微小变化很敏感
两分类logistic回归模型
多分类 有序反应变量 logistic回归模型
多分类 无序反应变量 logistic回归模型
Logistic线性回归不能用普通回归方式。
(1)离散变量的误差服从伯努利分布(即 没有正态性假设)
(2)存在异方差。
用极大似然估计。因此评价模型的拟合度的标准变为似然值而非离差平方和。
(每个观察对象都有对应的x1,x2,…,xp个指标)