STL笔记

时间序列数据的变化是众多复杂因素共同作用的结果,影响因素主要包括长期趋势、季节变动、周期变动和不规则变动,其中不规则变动又包含随机变动和突发变动,这一影响因素往往难以测定,一般作为干扰项处理。
时间序列分解能够帮助分析者去除其他因素的影响,单纯分析某一确定性因素影响下的序列分布规律。
目前常用的分解模型有加法模型和乘法模型,如果季节变动的幅度以及趋势周期的波动不随时间变化或者变化幅度不大,适合采用加法模型:
Y = M1 + M2 + M3
分解获得低频率的趋势项、高频率的季节项及不规则变化的残余项,即
Trend、Seasonal、Remainder
分解后指标的长期趋势和季节周期更具规律性,之后便可以对两个分解项分别进行预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值