Backtrader中文文档---软件使用介绍

BackTrader是一款基于Python的高效回测与交易策略开发框架,支持实时数据与交易,包括盈透证券、Oanda等平台。它提供丰富的技术指标、自定义策略编写、多种订单类型及费用模型,同时具备强大的绘图功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

backtrader中文文档

<文档由 BackTrader.cn 聘请专业人员进行翻译,转载请注明出处>
本中文文档来自 网站 BackTrader.cn

Backtrader 是一个基于 Python 的回测交易开发框架,使用它可以方便的编写技术指标和交易策略。

本人录制的教学视频,请大家多多指教 ,跟着实际上手学习一遍更有效果 《从编程小白到量化宗师之路C02—BackTrader基础》https://edu.csdn.net/course/detail/24721

主要功能

  1. 支持以下平台的实时价格数据和实时交易 :
  2. 盈透证券 (需要安装 IbPy 和 pytz)
    
  3. 可视化图表Visual Chart (需要安装 comtypes 和 pytz,另外comtypes 需要在官方的基础上做一些修改)
    
  4. Oanda (需要安装 oandapy)
    
  5. 来自 csv 文件的数据、网络在线数据或来自 pandas 和 blaze 的数据
  6. 数据处理器(例如可以将日线数据拆分,模拟日内数据)
  7. 支持多数据源和多策略
  8. 多个时间窗口
  9. 集成重采样和重放
  10. 分步回测或一次性回测 (策略调优除外)
  11. 大量技术指标
  12. 支持TA-Lib组件
  13. 轻松开发自定义指标
  14. 分析评价指标(如:时间周期收益、夏普比率、SQN),输出可用于 pyfolio 的结果
  15. 灵活定义手续费逻辑
  16. 支持 市价单、周期结束单 (如以一分钟、一小时结束后价格成交)、限价单、止损单 和 止损现价单 ,还支持交易滑点和期货复权
  17. 绘图 (需要安装 matplotlib)

本框架主要有两个设计目标

1 便于使用
2 第一条
------基于Miyagi先生的空手道(Kid)规则。

运行此回测框架的基础知识

创建一个策略

  1. 确定技术指标的参数(如均线周期数)
  2. 在策略中添加框架自带的 Indicators 技术指标
  3. 编写买入和卖出的逻辑代码

或者

  1. 编写你自己的 做多 / 做空 逻辑代码

然后

  1. 创建一个Cerebro引擎

    第一步

    2 加入刚才编写的策略

    或者

    1. 加入信号 Signals (算是一种简化版的策略)

    第二步

  2. 加载和加入价格数据

  3. 运行 cerebro.run() 进行回测

  4. 绘制 cerebro.plot() 执行的可视化结果

该平台可以高度自定义
我们希望您喜欢这个有用且有趣的平台。

<think>好的,用户正在寻找关于“无限易Pythongo策略”的信息或教程。首先,我需要确定这个术语的正确性,因为“Pythongo”可能是一个拼写错误或者用户不太熟悉的术语组合。考虑到常见的Python相关策略,可能是指“Python Go”策略,但也不太常见。另外,“无限易”可能是指某种交易策略,比如高交易或自动化交易中的“无限易”平台?或者是用户将“Infinite Ease”直译过来的名称? 首先,我应该检查用户提到的关键词是否存在混淆或拼写错误。例如,“无限易”在中文里可能指的是某个特定的金融交易平台,比如无限易(Infinite Ease)是一个国内的期货交易软件,支持自动化交易。而“Pythongo”可能是用户想表达“Python Go”,但更可能的是,用户想表达的是Python在无限易平台上的应用策略,可能打字错误导致成了“Pythongo”。因此,正确的关键词应该是“无限易Python策略”或“Infinite Ease Python策略”。 接下来,我需要验证是否存在相关的教程或信息。考虑到无限易平台主要用于期货交易,支持Python脚本进行策略开发,因此用户可能是在寻找如何在该平台上使用Python编写交易策略的指南。例如,无限易的官方文档或社区可能有相关教程。 但根据目前我的知识库,没有直接关于无限易平台的具体引用内容。因此,可能需要引导用户参考官方资源,或者提供通用的Python量化交易策略编写方法,并建议用户结合无限易的API文档进行开发。同时,用户可能需要学习Python在量化交易中的基础,比如使用pandas进行数据分析,或者使用backtrader等回测框架。 此外,用户的问题中提到了引用[1]和[2],但这两个引用似乎与Python的字典方法和抽象类相关,可能与当前问题关联不大,可能是用户误贴了引用内容。因此,在回答时可能需要忽略这些引用,或者指出它们与当前问题无关。 总结用户的真实需求:用户可能希望了解如何在无限易交易平台上使用Python编写自动化交易策略,但可能由于术语拼写问题导致信息不准确。因此,回答应首先澄清可能的术语错误,然后提供相关的资源建议,包括官方文档、Python量化交易的基本步骤,以及常见库的使用方法。</think>关于您提到的“无限易Pythongo策略”,目前没有直接匹配的公开教程或资料。根据分析,可能存在以下两种理解方向: 1. **术语澄清** - 若指**无限易(Infinite Ease)交易平台**的Python策略开发: 该平台支持通过Python编写量化交易脚本,建议: - 查阅无限易官方API文档,了解接口调用规范 - 学习Python量化交易基础(如数据获取、信号生成、订单管理) - 参考通用期货策略框架,如均值回归、趋势跟踪策略 - 若“Pythongo”为笔误: 可能涉及**Python + Go语言混合编程**,用于高交易系统。典型方法包括: ```python # Python端(策略逻辑) def generate_signal(data): return "BUY" if data[-1] > data.mean() else "SELL" # 通过gRPC/Protobuf与Go端通信(低延迟执行) ``` 2. **学习路径建议** - 基础技能: - 掌握`pandas`数据处理(如`df.resample('1T').ohlc()`生成K线) - 熟悉`numpy`数值计算(如`np.std(returns)`计算波动率) - 了解异步编程(`asyncio`)应对实时行情 - 进阶方向: $$ SharpeRatio = \frac{E[R_p - R_f]}{\sigma_p} $$ 通过类似公式评估策略风险收益比,使用`pyfolio`库生成分析报告
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BackTraderCN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值