机器学习笔记:逻辑回归

Sigmoid函数

利用Sigmoid函数来求得回归系数

σ(z)=11+ez

曲线图如下
这里写图片描述
x=0时,Sigmoid函数的值为0.5;
x>0时,Sigmoid函数值大于0.5,x越大,函数值越接近1;
x<0时,Sigmoid函数值小于0.5,x越小,函数值越接近0;

为了实现逻辑回归分类器,在每个特征上都乘以一个回归系数,再把这些乘积相加,把这个和带入Sigmoid函数中的大一个范围在0~1的值。把大于0.5的数值归为1类,小于0.5的数值归为0类(上图中的y是指分类)。

所以,由上所述,sigmoid函数中的z,可以表示为:

z=w0x0+w1x1+w2x2++wnxn

问题变成了求最佳回归系数是多少?如何确定它们的大小?

于是 z 式可以采用向量写法可以写成

z=wτx

表示将这两个数值向量对应元素相乘后全部加起来即得到z值。其中 x 是分类器的输入数据,向量w是要找到的最佳系数。

梯度上升法确定决策边界

梯度上升法的基本思想

找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。
函数 f(x,y) 的梯度由下式表示:

f(x,y)=f(x,y)xf(x,y)y

这个梯度意味着要沿 x 轴方向移动f(x,y)x,沿 y 轴方向移动f(x,y)y,其中函数 f(x,y) 必须在待计算的点上有定义并且可微。
沿梯度的方向移动,移动步长记作 α ,需要不停地迭代直到找到最优点,梯度上升算法的迭代公式如下:
w:=w+αwf(x,y)

梯度下降算法公式如下:

w:=wαwf(x,y)

梯度上升算法求函数的最大值,梯度下降算法用来求函数的最小值。

该公式会一直被迭代执行,直到达到某个停止条件为止,比如迭代次数达到某个指定值或算法达到某个可以允许的误差范围。

在《Machine Learning in Action》中,作者例子的两行代码不明白:

error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose()*error

这篇文章《学习Machine Leaning In Action(四)》给了推导过程。

随机梯度上升

梯度上升算法在每次更新回归系数时都会遍历整个数据集,当样本数据庞大到上亿和成千上万的特征时,计算复杂度就非常高。随机梯度上升算法就是弥补这个缺陷的。其伪代码,如下:

所有回归系初始化为1
对数据集中每个样本
    计算该样本的梯度
    使用alpha x gradient 更新回归系数值
返回回归系数值

参考文献:
机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值