自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 【计算机视觉】:基于PyTorch的YoloV5目标检测平台

基于PyTorch的YoloV5目标检测平台

2022-06-25 15:45:13 4462 1

原创 【计算机视觉】:(7)多视几何

多视几何

2022-06-16 12:06:07 419

原创 【计算机视觉】:(6)基于BOW的图像检索

最初的Bag of words,也叫做“词袋”,在信息检索中,Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现,或者说当这篇文章的作者在任意一个位置选择一个词汇都不受前面句子的影响而独立选择的。Bag-of-words模型是信息检索领域常用的文档表示方法。在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词

2022-06-13 19:47:06 835 1

原创 pycharm背景和开头设置

pycharm背景设置pycharm设置每个脚本开头信息

2022-06-12 13:56:34 240

原创 【计算机视觉】:(5)图像分割

图像分割

2022-06-11 20:29:09 349

原创 【计算机视觉】:(4)相机模型与参数标定

相机模型与参数标定1. 针孔相机模型1.1. 坐标转换1.2. 像主点偏移1.3. 畸变现象1.4. 内参矩阵1.5. 外参矩阵2. 相机参数标定2.1. 实验数据2.2. 代码实现2.3. 结果及分析1. 针孔相机模型1.1. 坐标转换C点表示相机的中心点,也是相机坐标系的中心点;Z轴表示相机的主轴;p点所在的平面表示相机的像平面,也就是图片坐标系所在的二维平面;p点表示像主点,主轴与像平面相交的点C点到p点的距离,也就是图中的f表示相机的焦距;像平面上的x和y坐标轴与相机坐标系上的

2022-05-11 18:20:10 1392

原创 【计算机视觉】:(3)全景图像拼接

全景图像拼接1. 拼接原理2. SIFT3. RANSAC算法4. 单应性变换5. 代码实现6. 问题解决1. 拼接原理(1)检测并提取图像的特征和关键点(2)匹配两个图像之间的描述符(3)使用RANSAC算法使用我们匹配的特征向量估计单应矩阵(4)拼接图像2. SIFT(1)(2)是运用SIFT局部描述算子检测图像中的关键点和特征,SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高,所以用来检测要拼接图像的特征及关键点就很有优

2022-04-17 16:42:51 6525 1

原创 【计算机视觉】:(2)局部图像描述子

这里写目录标题一级目录二级目录三级目录一级目录二级目录三级目录

2022-03-29 17:19:23 4739 2

原创 【计算机视觉】:(1)基本的图像处理和操作

【计算机视觉】:(1)基本的图像处理和操作1. 直方图2. 高斯滤波3. 直方图均衡化1. 直方图图像的直方图是用来表征图像像素值的分布情况。用一定数目的小区间(bin)来指定表征像素值的范围,每个小区间会得到落入该小区间表示范围的像素数目。该(灰度)图像的直方图可以使用hist()函数绘制,代码如下:from PIL import Imagefrom pylab import *def Histogram(): #读取图像到数组中并转换成灰度图像 img = array(Ima

2022-03-02 00:00:10 2428

原创 机器学习:(6)支持向量机

支持向量机1. 什么是SVM1. 什么是SVM支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。给定训练样本集D = {(x1,y1),...,(xm,ym)(x_1,y_1),...,(x_m,y_m)(x1​,y1​),...,(xm​,ym​)},yi∈y_i∈yi​∈{-1,+1},分类学习最基本的想法就是基于训

2021-12-21 20:05:27 938

原创 Qt:资源文件引用

项目->添加新的文件->Qt resource files->添加前缀->添加文件

2021-11-26 15:34:31 569

原创 QT添加外部动态库

最后加上#include " " 绝对路径。

2021-11-25 16:52:12 3461

原创 QT:新建程序

2021-11-25 14:03:42 393

原创 QT动态库创建

2021-11-22 19:38:41 243

原创 QT项目创建

注意不能有中文路径运行会有对话窗口

2021-11-22 19:34:13 205

原创 C++:STL应用

STL应用一、撰写自己的算法和函数,结合容器和迭代器解决序列变换(如取反、平方、立方),像素变换(二值化、灰度拉伸)二、用set存储学生信息,并进行增删改查操作三、输入一个字符串,用map统计每个字符出现的次数并输出字符及对应的次数。一、撰写自己的算法和函数,结合容器和迭代器解决序列变换(如取反、平方、立方),像素变换(二值化、灰度拉伸)二、用set存储学生信息,并进行增删改查操作三、输入一个字符串,用map统计每个字符出现的次数并输出字符及对应的次数。...

2021-11-20 16:33:58 1021

原创 机器学习:(4)朴素贝叶斯

朴素贝叶斯一、朴素贝叶斯理论1. 简介2. 贝叶斯决策理论3. 条件概率一、朴素贝叶斯理论1. 简介朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。2. 贝叶斯决策理论朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要

2021-11-18 22:29:40 666

原创 机器学习:(5)Logistic回归

Logistic回归一、Logistic回归与梯度上升算法1. Logistic回归1.1. 基于Logistic回归和Sigmoid函数的分类1.2. 基于最优化方法的最佳回归系数确定2. 梯度上升算法三级目录一、Logistic回归与梯度上升算法1. Logistic回归logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。logistic回归的因变量可以

2021-11-18 22:28:33 2502

原创 C++实验三:模板

模板一、模板函数(compare)1. 一般模板函数2. 特化模板函数3. 测试4. 小结二、模板类Queue或Stack三、模板类AutoPtr一、模板函数(compare)1. 一般模板函数首先写一个判断是否相等的模板函数,注意声明和函数体都写在头文件中。//模板函数需要将声明和函数体都放在头文件中//一般模板函数template<class T>bool compare(const T& a, const T& b){ return a == b;}

2021-11-16 13:05:56 900

原创 机器学习:(3)决策树

决策树一、什么是决策树二、决策树剪枝三、决策树的三种常用算法1. ID3(1)定义(2)知识点信息熵信息增益(3)步骤决策树的构造使用Matplotlib注解绘制树形图一、什么是决策树(1)决策树,就是一个类似于流程图的树形结构,树内部的每一个节点代表的是对一个特征的测试,树的分支代表该特征的每一个测试结果,而树的每一个叶子节点代表一个类别。树的最高层是就是根节点。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为

2021-10-27 01:00:38 1884

原创 C++实验二:继承和多态

继承和多态一、继承访问权限测试1. 主要内容2. 代码实现main.cppperson.h3.总结二、友元类继承测试1. 主要内容2. 代码实现friend.h3. 总结三、多态性综合应用1. 定义2. 多态实现的条件3. 语法4. 主要内容5. 代码实现一般多态性函数和特殊多态性函数base.cpp析构函数的多态性多继承与虚继承一、继承访问权限测试1. 主要内容(1)设计类Person具有public, protected, private等不同属性的成员函数或变量;(2)类Student,Tea

2021-10-25 18:10:49 628

原创 机器学习经典数据集

http://archive.ics.uci.edu/ml/index.php使用方法:https://blog.csdn.net/shengchaohua163/article/details/78385166

2021-10-23 19:59:02 261

原创 pip镜像源

pip install 包名 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

2021-10-11 16:07:35 59

原创 机器学习:(2)kNN算法之约会网站配对

kNN算法之约会网站配对1. 实验内容2. 代码2.1 从文本文件中解析数据2.2 归一化数值2.3 测试算法3. 运行结果1. 实验内容使用kNN算法改进约会网站的配对效果,使匹配对象更好地划分到确切的分类中。2. 代码2.1 从文本文件中解析数据从文件中读取数据,将待处理数据的格式改变为分类器可以接受的格式。该函数输入为文件名字符串,输出为训练样本矩阵和类标签向量。#从文件中读取数据#首先将待处理数据的格式改变为分类器可以接受的格式#该函数输入为文件名字符串,输出为训练样本矩阵和类标签

2021-10-10 20:01:58 930

原创 C++实验一:CMatrix类设计

CMatrix类设计一、CMatrix类的代码实现1. main.cpp2. CMatrix.h3. CMatrix.cpp二、运行结果三、函数1. 构造函数(1)分类(2)特点2. 析构函数3. 运算符重载4. 友元函数5. 内联函数(1)显示(2)隐式一、CMatrix类的代码实现1. main.cpp#include <iostream>#include "CComplex.h"#include <stdio.h>#include "CMatrix.h"using

2021-10-08 23:45:36 353

原创 机器学习:(1)k-近邻算法及手写数字识别系统

(一)kNN算法概述1.k邻近算法基于距离的测量,选取距离最近的特征值,即为预测的结果。该算法属于监督学习中的分类算法,基于大量数据的基础上,做出相应的预测,一般运用于手写数字识别,约会网站的大量数据匹配等等。2.其优点是:精度高,对异常值不敏感,无数据输入假定.3.其缺点是:计算复杂度高,空间复杂度高。4.适用数据范围是:数值型和标称型。(二)原理kNN算法的工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与

2021-09-18 16:54:05 1075

原创 人工智能作业

1.对文件的增删改创建文件‘r’:以只读方式打开文件。‘w’:以写入方式打开文件。‘a’:以追加方式打开文件。file = open('D:/GameDownload/英雄联盟/the shy/ts,txt','w')file.write('shy哥冷静!')删除文件Python OS 文件/目录方法os 模块提供了非常丰富的方法用来处理文件和目录。import osfil...

2019-10-27 18:19:02 324

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除