最长斐波那契序列-LeetCode-873

英文版

A sequence X_1, X_2, …, X_n is fibonacci-like if:

  • n >= 3
  • X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.

(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)

Example 1:

Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].

Example 2:

Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].

Note:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < … < A[A.length - 1] <= 10^9
    (The time limit has been reduced by 50% for submissions in Java, C, and C++.)

中文版:

给你一个严格单调递增的数组,请问数组里最长的斐波那契序列的长度是多少?例如,如果输入的数组是[1, 2, 3, 4, 5, 6, 7, 8],由于其中最长的斐波那契序列是1, 2, 3, 5, 8,因此输出应该是5。

分析:

思路一

在斐波那契序列中,第n个数字等于第n-1个数字与第n-2个数字之和。

考虑以数组中第i个数字(记为A[i])为结尾的最长斐波那契序列的长度。对于每一个j(0 <= j < i),A[j]都有可能是在某个斐波那契序列中A[i]前面的一个数字。如果存在一个k(k < j)满足A[k] + A[j] = A[i],那么这三个数字就组成了一个斐波那契序列。这个以A[i]为结尾、前一个数字是A[j]的斐波那契序列是在以A[j]为结尾、前一个数字是A[k]的序列的基础上增加了一个数字A[i],因此前者的长度是在后者的长度基础上加1。

我们可以用一个二维数组lengths来记录斐波那契序列的长度。二维数组中第i行第j列数字的含义是以输入数组中A[i]结尾、并且前一个数字是A[j]的斐波那契序列的长度。如果存在一个数字k,满足A[k] + A[j] = A[i],那么lengths[i][j] = lengths[j][k] + 1。如果不存在满足条件的k,那么意味这A[j]、A[i]不在任意一个斐波那契序列中,lengths[i][j]等于2。

二维数组lengths中的最大值就是输出值。

class Solution {
    public int lenLongestFibSubseq(int[] A) {
        if (null == A || A.length == 0) {
			return 0;
		}
		Map<Integer, Integer> map = new HashMap<>();
		for (int i = 0; i < A.length; i ++) {
			map.put(A[i], i);
		}
		
		int[][] lengths = new int[A.length][A.length];
		int maxLength = 1;
		for (int i = 1; i < A.length; i ++) {
			int num_3 = A[i];
			int length = 2;
			for (int j = i-1; j >= 0; j --) {
				int num_2 = A[j];
				int num_1 = num_3 - num_2;
				
				int len = 2;
				if (num_1 < num_2 && map.containsKey(num_1)) {
					len = lengths[j][map.get(num_1)] + 1;
				}
				lengths[i][j] = len;
				length = Math.max(length, len);
			}
			maxLength = Math.max(maxLength, length);
		}
		return maxLength > 2 ? maxLength : 0;
    }
}

思路二

双重循环枚举所有可能的情况

class Solution {
    public int lenLongestFibSubseq(int[] A) {
        int N = A.length;
        Set<Integer> S = new HashSet();
        for (int x: A) S.add(x);

        int ans = 0;
        for (int i = 0; i < N; ++i)
            for (int j = i+1; j < N; ++j) {
                int x = A[j], y = A[i] + A[j];
                int length = 2;
                while (S.contains(y)) {
                    // x, y -> y, x+y
                    int tmp = y;
                    y += x;
                    x = tmp;
                    ans = Math.max(ans, ++length);
                }
            }

        return ans >= 3 ? ans : 0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值