《大语言模型》:人工智能时代的知识盛宴,大模型中文书籍震撼发售!附PDF

引言

本书深入浅出地剖析了大语言模型的核心原理,系统性的整理了大模型相关知识点。它从大模型的发展历程开始讲起,逐步引导读者理解模型的架构设计、训练数据集、预训练、微调对齐优化策略,最后到大模型评测应用。无论你是AI领域的从业者,还是刚刚入坑大模型的学生,亦或是对大模型感兴趣的普通读者,都比较适合。

中文书籍

大语言模型LARGE LANGUAGE MODEL

高等教育出版社

你是否读过大语言模型综述文章_A Survey of Large Language Models_?这是学术界首篇系统介绍大语言模型技术的综述性文章,成为了很多人入门大模型的必读论文,目前引用次数已经突破3700次,获得了学术界的广泛关注。其中绘制的模型演进图、技术统计表被广泛传播、使用。

为了进一步推动我国大模型技术的发展,该综述文章作者团队经过数月的写作与修订,《大语言模型》中文书籍于近日正式出版上线。该书注重为读者提供系统性的知识讲解,力图展现一个整体的大模型技术框架和路线图,权威且系统!

本书由中国人民大学师生联手打造,由赵鑫教授和文继荣教授领衔,博士生李军毅、周昆和硕士生唐天一参与编著,作者团队在大模型领域有着丰富的研究与开发经验,曾主导研发了文澜、玉兰等大模型。

赵 鑫 中国人民大学高瓴人工智能学院教授,北京大学博士,国家自然科学基金优秀青年科学基金项目获得者。研究方向为大模型与自然语言处理,组织编写了大语言模型英文综述文章_A Survey of Large Language Models_。

李军毅 新加坡国立大学研究员,中国人民大学与加拿大蒙特利尔大学博士,研究方向为大模型与自然语言处理。

周昆 中国人民大学博士,曾获微软学者奖学金、百度奖学金、字节跳动奖学金,研究方向为多模态理解与自然语言处理。

唐天一 阿里巴巴通义千问高级算法工程师,曾获国家奖学金、ACM-ICPC银奖,研究方向为大模型与自然语言处理。

文继荣 中国人民大学高瓴人工智能学院执行院长,国家高层次人才专家,曾任微软亚洲研究院高级研究员和互联网搜索与挖掘组主任。长期从事人工智能和大数据领域的研究工作,近年来尤其专注于大模型相关方向的研究。

本书的编者长期从事大模型技术的相关研究,曾组织研发了文澜、玉兰等一系列大模型,具有深厚的科研与实践积累。本书内容深入结合了编者在研发大模型过程中的第一手经验,全面覆盖了大模型技术的多方面知识,可以作为深入学习大模型技术的参考书籍,强烈推荐阅读!

——张宏江 北京智源人工智能研究院学术顾问委员会主任、美国国家工程院外籍院士

本书的编写团队于2023年3月发布了学术界首篇大语言模型综述文章_A Survey of Large Language Models_,受到了广泛关注。在这篇经典综述文章基础上,编写团队对编写内容进行了精心组织与撰写,并且融入了其长期从事大模型技术的科研经验。本书具有重要的参考与学习价值,是一部值得推荐的大模型佳作。

——鄂维南 北京大学讲席教授、中国科学院院士

大模型作为一种快速兴起的人工智能技术,已经深刻地影响了未来的科技发展趋势。为了更好地推进大模型技术在我国的学习与普及,亟须有专业的中文技术图书进行系统介绍。本书是一部精心编写的大模型技术图书,涵盖了预训练、微调、对齐、提示工程等众多基础内容,能够为相关从业人员提供权威的、系统的学习参考,强烈推荐阅读。

——张亚勤 清华大学智能科学讲席教授、中国工程院外籍院士

书籍特色

1.全面解读大语言模型

本书内容基本全覆盖大语言模型训练与使用的全流程,从预训练到微调与对齐,从使用技术到评测应用,帮助读者全面掌握大语言模型的核心技术。

2.丰富的配套代码与工具

本书以核心算法技术为基础,并配有大量的代码实战与讲解,同时搭配相关的开发工具包LLMBox与YuLan大模型,供读者深入阅读理解相关技术。

3.通俗易懂,专业权威

本书兼顾理论深度与阅读体验,以清晰的语言与丰富的图解,降低技术门槛,让初学者和专业人士都能轻松上手。

精美截图

注:我们梳理了自2019年以来的各大学术机构的大语言模型发展历程,可以看到近三年大模型的井喷式发展

注:我们整理了基于LLaMA模型的各类衍生工作,通过继续预训练、指令微调等方法,LLaMA可以适配到不同的语言、多样的领域

片段赏析

本书通过图片、表格、公式、示例、代码、实验结果等多样化的展示形式,力求向读者深入浅出地讲解大模型的不同技术。

注:本书收集了不同的预训练数据过滤技巧,以“建议”的形式向读者更好地展示具体的过滤方法

注:本书基于配套开发工具包LLMBox与YuLan大模型,展示了完整的指令微调代码,读者可以“端到端”上手实践

目录

第一部分 背景与基础知识

第1章 引言

第2章 基础介绍

第3章 大语言模型资源

第二部分 预训练

第4章 数据准备

第5章 模型架构

第6章 模型预训练

第三部分 微调与对齐

第7章 指令微调

第8章 人类对齐

第四部分 使用与评测

第9章 解码与部署

第10章 提示学习

第11章 规划与智能体

第12章 评测

第13 章 总结

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值