CryptoMamba:比特币价格预测框架,实际交易测试中实现200%收益!

CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction

比特币价格预测因市场高波动性和复杂性而具有挑战性,价格受市场情绪、监管动态和宏观经济趋势等多因素影响,数据呈现非平稳性。

本文提出首个利用SSMs进行比特币价格预测的框架CryptoMamba。实验结果显示,CryptoMamba表现由于传统方法,RMSE为1598.1,MAPE为0.02034,MAE为1120.7。

在实际交易应用中,使用初始资金100美元进行模拟交易CryptoMamba实现了246.58美元的高额回报,展现出强大的泛化能力和盈利能力。

论文地址:https://arxiv.org/pdf/2501.01010

Github地址:https://github.com/MShahabSepehri/CryptoMamba

【 扫描文末二维码加入星球获取论文、源码

摘要

预测比特币价格因市场高波动性和复杂非线性动态而具有挑战性。传统时间序列模型(如ARIMA、GARCH)和LSTM在捕捉数据中的状态转变和长程依赖性方面存在局限。本文提出CryptoMamba,一种基于Mamba的状态空间模型(SSM)架构,能有效捕捉金融时间序列数据中的长程依赖性。实验表明,CryptoMamba在不同市场条件下提供更准确的预测和更好的泛化能力。结合交易算法,CryptoMamba在实际应用中能将准确预测转化为财务收益。研究结果显示SSM在股票和加密货币价格预测任务中的巨大优势。

简介

比特币价格预测因市场高波动性和复杂性而具有挑战性,需求日益增长。价格受市场情绪、监管动态和宏观经济趋势等多因素影响,数据呈现非平稳性。传统统计方法(如ARIMA和GARCH)难以处理复杂非线性和突发变化,深度学习模型(如LSTM和Transformer)在可扩展性和泛化性上有限。状态空间模型(SSMs)通过潜在状态和观察变量组合,适合处理金融数据的时间序列特性。

CryptoMamba是首个利用SSMs进行比特币价格预测的框架,提出了Mamba-based SSM架构,旨在捕捉长程依赖。研究了交易量对预测准确性的影响,定义并评估了两种交易算法(Vanilla和Smart)。与多个基线模型比较,CryptoMamba在预测准确性、金融回报和计算效率上表现优越。

相关工作

早期比特币价格预测主要使用ARIMA和GARCH模型,前者适合线性关系,后者擅长捕捉波动聚集,但都难以处理加密货币市场的非线性和突发性变化。

近年来,研究转向机器学习技术,LSTM和GRU因其建模序列依赖性而受到关注,研究表明深度学习模型在捕捉复杂时间依赖性方面优于传统方法。Bi-LSTM在比特币、以太坊和莱特币的预测中表现最佳,但深度学习模型易过拟合且需大量数据,限制了其在高波动市场的应用。其他机器学习算法(如SVM、ANN、NB、RF)也被应用于比特币价格预测,显示出提高预测准确性的潜力。

尽管有进展,现有方法仍难以有效捕捉加密货币市场的长程依赖和状态转变,状态空间模型(SSMs)因其灵活性和计算效率成为有前景的选择。Mamba模型及其变体S-Mamba通过选择机制和双向编码,显著提高了时间序列预测的准确性和计算效率,适合金融应用如比特币价格预测。

预备知识

状态空间模型(SSMs)结合了递归神经网络(RNNs)和卷积神经网络(CNNs)的优点,适用于捕捉时间序列数据中的长程依赖。SSMs通过低维隐藏状态处理1-D输入序列,描述为连续时间系统的离散化。传统SSMs为线性时不变(LTI)系统,动态不依赖于输入。

Mamba引入了输入依赖性,使得系统为时变,且保持计算效率,计算成本与序列长度线性相关。Mamba在语言、音频和基因组任务中表现优异,超越标准SSMs和Transformers。本文提出基于Mamba的定制架构,专注于时间序列预测。

方法

CryptoMamba利用基于Mamba的SSM解决比特币价格预测中的挑战。该方法有效捕捉高度波动金融数据中的长程依赖性。

数据集

比特币价格预测文献存在数据集不一致的问题,影响模型的泛化能力。本研究使用2018年9月17日至2024年9月17日的最新公开数据集,评估CryptoMamba模型与基线模型的有效性。数据集包含五个主要特征:开盘价、收盘价、最高价、最低价和交易量,反映市场活动和价格波动。实验中将数据分为测试集和验证集,以评估模型在未见数据上的表现。分析中分别考虑了有无交易量数据的情况,探讨其对预测准确性的影响,交易量可能反映市场需求和情绪。

CryptoMamba架构

CryptoMamba是一种基于Mamba架构的金融时间序列预测模型,利用Mamba块处理序列数据中的长程依赖。模型由多个C-Block和一个Merge块组成,输入为固定天数的特征,输出为下一天的预测收盘值。每个C-Block包含多个CMBlock和一个多层感知机(MLP),CMBlock由归一化层和Mamba块组成,输出逐层传递以提取特征。Merge块通过线性层整合所有C-Block的输出,生成最终预测。CryptoMamba的层次结构能够逐步提炼特征,捕捉短期和长期的时间依赖性,Mamba块的输入依赖动态确保对金融数据的适应性。

指标

评估模型预测准确性使用三种标准指标:RMSE、MAPE和MAE。

  • RMSE重罚大误差,适用于大误差成本高的场景。

  • MAPE以百分比表示误差,适合不同范围比较,但在实际值小的情况下可能膨胀误差。

  • MAE平均绝对误差,平等对待所有偏差,提供稳健的准确性衡量。

三个指标值越低,模型性能越好,RMSE和MAE测量绝对误差,MAPE测量相对误差。

实验

本文评估CryptoMamba在比特币价格预测中的有效性,比较LSTM、Bi-LSTM、GRU和S-Mamba等基线模型。评价指标包括预测准确性(RMSE、MAPE、MAE)和模型效率(参数数量)。研究交易量作为特征的影响,进行有无交易量的实验对比。结果展示了CryptoMamba相较于传统和先进基线的优势。

实验设置

**对比模型:**CryptoMamba与LSTM、Bi-LSTM、GRU、S-Mamba四个基线模型进行性能评估。

模型配置:

  • LSTM:3层,隐藏层大小100,擅长捕捉长时依赖。

  • Bi-LSTM:3层,隐藏层大小100,学习前后时间依赖。

  • GRU:3层,隐藏层大小100,参数更少,轻量化选择。

  • S-Mamba:d_model 128,d_state 32,d_ff 128,2层,未用于比特币预测。

  • CryptoMamba:3个C-Blocks,每个包含4个CMBlocks,状态维度64。

**实验设置:**使用前14天数据预测次日收盘价,Adam优化器,RMSE损失,批量大小32,采用学习率调度和权重衰减,早停法选择最佳验证损失模型。

**数据处理:**统一训练-验证-测试划分,预测开始于每个数据分割期的14天后,避免数据污染。

**特征分析:**在有无交易量作为特征的两种设置下进行实验,评估交易量对预测准确性的影响。

**超参数:**基线模型使用最佳实践超参数,设置固定随机种子以确保可重复性。

结果

实验结果显示,CryptoMamba在所有评估指标上均优于LSTM、Bi-LSTM、GRU和S-Mamba,展现出对比特币价格动态的优越捕捉能力。CryptoMamba-v(包含交易量)表现最佳,RMSE为1598.1,MAPE为0.02034,MAE为1120.7。即使不包含交易量,CryptoMamba仍超越所有基线模型的量化版本,显示其鲁棒性。S-Mamba在包含交易量的设置中表现竞争力,RMSE为1651.6,表明先进状态空间模型在捕捉长程依赖方面的优势。Bi-LSTM和LSTM在包含交易量时显著提升表现,而GRU增益有限,表明交易量对模型架构的影响。

整体结果确认CryptoMamba在两种设置中的有效性,交易量数据的加入普遍提高了预测准确性,强调其在比特币价格预测中的重要性。图2和图3展示了所有模型在训练、验证和测试集上的预测结果,非Mamba基线模型在波动期准确性下降,CryptoMamba则持续跟踪实际价格趋势,展现出更好的泛化能力和鲁棒性。

效率

CryptoMamba的参数数量为136k,是所有模型中最低的,显著优于Bi-LSTM(569k)和S-Mamba(330k)。LSTM和GRU的参数数量分别为204k和153k,均高于CryptoMamba。CryptoMamba在保持较低参数量的同时,仍能有效捕捉数据中的关键模式,表现出色。其较少的参数量降低了计算需求,适合资源受限的环境,并减少了过拟合风险,提升了对未见数据的泛化能力。相比S-Mamba,CryptoMamba以不到一半的复杂度实现了更高的准确性,验证了其在金融时间序列预测中的架构优势。

在实际交易中的应用

本文评估CryptoMamba在真实交易场景中的实用性,使用初始资金100美元进行模拟交易。

两种交易算法:Vanilla(简单买卖决策)和Smart(风险意识决策)。

  • Vanilla算法基于预测价格与实际价格的变化比率(d),设定阈值0.01,低于该值不交易。

  • Smart算法考虑预测价格的上下限区间(2%风险),根据当前价格与区间的关系决定买卖策略。

测试期结果显示,CryptoMamba在Vanilla和Smart设置中均实现最高回报,分别为246.58美元和213.20美元。验证期CryptoMamba表现强劲,Vanilla和Smart设置分别为124.09美元和127.12美元。验证期价格变化平稳,测试期价格波动较大,传统基线模型在测试期表现不佳。S-Mamba在测试期表现良好,但在验证期表现较差,显示出对市场条件的适应性差异。CryptoMamba在不同市场条件下均表现优越,展现出强大的泛化能力和盈利能力。

总结

CryptoMamba是一种基于Mamba的金融时间序列预测架构,专注于比特币价格预测。利用状态空间模型(SSMs)和Mamba增强,CryptoMamba有效捕捉长程依赖,超越传统模型(如LSTM、BiLSTM、GRU、S-Mamba)。特别是包含交易量的变体在实际交易中实现最高回报,强调交易量数据的重要性。通过使用Vanilla和Smart算法进行交易模拟,展示CryptoMamba在实际交易中的实用性,超越回归指标的比较。CryptoMamba不仅适用于加密货币市场,也可用于股票和商品等其他时间序列数据的预测。

未来工作可扩展至其他金融资产,测试多资产组合的适应性,改进交易算法以利用预测区间,整合外部因素(如情绪分析、宏观经济指标)。进一步研究可在架构中整合风险管理策略,以增强在高度波动市场中的稳健性。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值