向量的基本概念

1. 线性运算

1.1 加减法运算

  1. 向量加法的三角形法则:将第一个向量的终点与第二个向量的起点重合,以第一个向量的起点为起点,第二个向量的终点为终点的向量为和向量。
  2. 向量加法的平行四边形法则:若两个向量是从同一点出发的不共线向量,以这两个向量为领边作平行四边形,则以同一起点为起点的对角线所对应的向量为和向量。
  3. 向量减法的三角形法则:将两个向量的起点放在一起,以减向量的终点为起点,被减向量的终点为终点的向量为差向量。

1.2 共线定理

知识点

  1. 一般地,我们规定实数 λ λ λ 与向量 a ⃗ \vec{a} a 的积是一个向量,这种运算叫做向量数乘,记作 λ a ⃗ λ\vec{a} λa ,它的长度和方向规定如下:
    (1) ∣ λ a ⃗ ∣ = ∣ λ ∣ ∣ a ⃗ ∣ |λ\vec{a}| = |λ||\vec{a}| λa =λa
    (2)当 λ > 0 λ>0 λ>0 时, λ a ⃗ λ\vec{a} λa a ⃗ \vec{a} a 的方向相同;当 λ < 0 λ<0 λ<0 时, λ a ⃗ λ\vec{a} λa a ⃗ \vec{a} a 的方向相反;当 λ = 0 λ=0 λ=0 时, λ a ⃗ λ\vec{a} λa = 0 ⃗ \vec{0} 0

    根据实数与向量积的定义,有如下运算律:
    λ , μ λ,μ λ,μ 为实数,则:
    (1) λ ( μ a ⃗ ) = ( λ μ ) a ⃗ λ(μ\vec{a}) = (λμ)\vec{a} λ(μa )=(λμ)a
    (2) ( λ + μ ) a ⃗ = λ a ⃗ + μ a ⃗ (λ+μ)\vec{a} = λ\vec{a}+μ\vec{a} (λ+μ)a =λa +μa
    (2) λ ( a ⃗ + b ⃗ ) = λ a ⃗ + λ b ⃗ λ(\vec{a}+\vec{b}) = λ\vec{a}+λ\vec{b} λ(a +b )=λa +λb

  2. 向量 a ⃗ ( a ⃗ ≠ 0 ⃗ ) \vec{a} (\vec{a} ≠ \vec{0}) a (a =0 ) b ⃗ \vec{b} b 共线,当且仅当存在唯一一个实数 λ λ λ ,使得 b ⃗ = λ a ⃗ \vec{b} = λ\vec{a} b =λa
    【注】向量共线定理的应用需要特别注意 ( a ⃗ ≠ 0 ⃗ ) (\vec{a} ≠ \vec{0}) (a =0 ),否则,若 a ⃗ = 0 \vec{a} = 0 a =0 b ⃗ ≠ 0 ⃗ \vec{b} ≠ \vec{0} b =0 ,则不存在 λ λ λ 使得 b ⃗ = λ a ⃗ \vec{b} = λ\vec{a} b =λa ;若 a ⃗ = 0 \vec{a} = 0 a =0 b ⃗ = 0 ⃗ \vec{b} = \vec{0} b =0 ,则使得 b ⃗ = λ a ⃗ \vec{b} = λ\vec{a} b =λa 成立的实数 λ λ λ 不唯一;

结论总结

  1. A B → = λ B C →    ⟺    O C → = x O A → + y O B → ( x + y = 1 ) \overrightarrow{AB} = λ\overrightarrow{BC} \iff \overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB} (x+y=1) AB =λBC OC =xOA +yOB (x+y=1)

【证明】(1)从左边往右边证明,由于 A B → = λ B C → \overrightarrow{AB} = λ\overrightarrow{BC} AB =λBC ,由向量减法可得 O B → − O A → = λ ( O C → − O B → ) \overrightarrow{OB} - \overrightarrow{OA} = λ(\overrightarrow{OC}-\overrightarrow{OB}) OB OA =λ(OC OB ),整理可得 O C → = ( 1 + 1 λ ) O B → − 1 λ O A → \overrightarrow{OC} = (1+\dfrac{1}{λ})\overrightarrow{OB} - \dfrac{1}{λ}\overrightarrow{OA} OC =(1+λ1)OB λ1OA ,令 x = − 1 λ x=-\dfrac{1}{λ} x=λ1 y = 1 + 1 λ y=1+\dfrac{1}{λ} y=1+λ1,可得 x + y = 1 x+y=1 x+y=1,得证。
(2)从右边往左边证明,因为 O C → = x O A → + y O B → ( x + y = 1 ) \overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB} (x+y=1) OC =xOA +yOB (x+y=1),所以 O C → = x O A → + ( 1 − x ) O B → \overrightarrow{OC} = x\overrightarrow{OA} + (1-x)\overrightarrow{OB} OC =xOA +(1x)OB ,整理得 x ( O A → − O B → ) = O C → − O B → x(\overrightarrow{OA}-\overrightarrow{OB}) = \overrightarrow{OC} - \overrightarrow{OB} x(OA OB )=OC OB ,则 − x A B → = B C → -x\overrightarrow{AB} = \overrightarrow{BC} xAB =BC ,令 λ = − 1 x λ=-\dfrac{1}{x} λ=x1,可得 A B → = λ B C → \overrightarrow{AB} = λ\overrightarrow{BC} AB =λBC ,得证。

【注】若点 O O O A A A B B B C C C三点不共线, A A A B B B C C C三点的位置可以任意互换,但当 A A A B B B C C C 三点的相对位置不同时,系数 x x x y y y 的正负会随之改变,可以利用向量加法的平行四边形法则进行解释。

1.1 向量与三角形

知识点

  1. 若向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 不平行,则 a ⃗ \vec{a} a b ⃗ \vec{b} b a ⃗ + b ⃗ \vec{a}+\vec{b} a +b a ⃗ − b ⃗ \vec{a}-\vec{b} a b ,可以构成一个平行四边形的两邻边和两对角线。

    根据三角形三边之间的关系,我们可以得到 ∣ a ⃗ ∣ |\vec{a}| a ∣ b ⃗ ∣ |\vec{b}| b ∣ a ⃗ ∣ + ∣ b ⃗ ∣ |\vec{a}|+|\vec{b}| a +b ∣ a ⃗ ∣ − ∣ b ⃗ ∣ |\vec{a}|-|\vec{b}| a b 之间的关系:
    (1)利用三角形三边之间的关系,可以得到 ∣ ∣ a ⃗ ∣ − ∣ b ⃗ ∣ ∣ ≤ ∣ a ⃗ ∣ ± ∣ b ⃗ ∣ ≤ ∣ a ⃗ ∣ + ∣ b ⃗ ∣ ||\vec{a}| - |\vec{b}|| ≤ |\vec{a}|±|\vec{b}| ≤ |\vec{a}| + |\vec{b}| a b a ±b a +b
    (2) ∣ a ⃗ + b ⃗ ∣ 2 + ∣ a ⃗ − b ⃗ ∣ 2 = 2 ( ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 ) |\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2) a +b 2+a b 2=2(a 2+b 2)

2. 基本定理与坐标表示

2.1 基本定理的应用

知识点

  1. 如果 e 1 ⃗ \vec{e_1} e1 e 2 ⃗ \vec{e_2} e2 是同一个平面内的两个不共线的非零向量,那么对于这一平面内的任意向量 a ⃗ \vec{a} a ,有且只有一对实数 λ λ λ μ μ μ,使 a ⃗ = λ e 1 ⃗ + μ e 2 ⃗ \vec{a} = λ\vec{e_1} + μ\vec{e_2} a =λe1 +μe2 ,其中,不共线的向量 e 1 ⃗ \vec{e_1} e1 e 2 ⃗ \vec{e_2} e2 叫做表示这一平面内所有向量的一组基底。

2.2 坐标运算

知识点

    1. 向量加法、减法、数乘向量
      a ⃗ = ( x 1 , y 1 ) \vec{a} = (x_1, y_1) a =(x1,y1) b ⃗ = ( x 2 , y 2 ) \vec{b} = (x_2, y_2) b =(x2,y2),则 a ⃗ + b ⃗ = ( x 1 + x 2 , y 1 + y 2 ) \vec{a} + \vec{b} = (x_1+x_2, y_1+y_2) a +b =(x1+x2,y1+y2) a ⃗ − b ⃗ = ( x 1 − x 2 , y 1 − y 2 ) \vec{a} - \vec{b} = (x_1-x_2, y_1-y_2) a b =(x1x2,y1y2) λ a ⃗ = ( λ x 1 , λ y 1 ) λ\vec{a} = (λx_1, λy_1) λa =(λx1,λy1)
    2. 向量坐标的求法
      (1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。
      (2)设 A ( x 1 , y 1 ) A (x_1,y_1) A(x1,y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2),则 A B → = ( x 2 − x 1 , y 2 − y 1 ) \overrightarrow{AB} = (x_2-x_1, y_2-y_1) AB =(x2x1,y2y1)
    3. 平面向量共线
      a ⃗ = ( x 1 , y 1 ) \vec{a}=(x_1,y_1) a =(x1,y1) b ⃗ = ( x 2 , y 2 ) \vec{b}=(x_2,y_2) b =(x2,y2),其中 b ⃗ ≠ 0 ⃗ \vec{b} ≠ \vec{0} b =0 ,则 a ⃗ ∥ b ⃗    ⟺    x 1 y 2 − x 2 y 1 = 0 \vec{a} ∥ \vec{b} \iff x_1y_2-x_2y_1=0 a b x1y2x2y1=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值