1.1 向量基本概念

向量及向量空间

线性代数是研究高维空间中向量的数学分支,十分抽象。向量是物理学中的矢量,为了使读者感受到线性代数后面的几何图像,本书简要回顾矢量相关知识。代数是工具,几何是灵魂,一定要重视代数后的几何,只有看到了几何,才能抓住本质,化繁为简,化难为易。

矢量

物理学中的力、速度、加速度和力矩等都是矢量,矢量是即有大小又有方向的量。可随意平行移动的有向线段可作为矢量的几何形象。两个矢量相等只有方向和大小均相等时才相等。矢量向坐标轴投影,获得每个分量,只有每个对应分量相等,两个矢量才相等。矢量大小满足勾股定理,方向为余弦定理。每个分量都乘以相同的实数 λ ≥ 0 \lambda \ge 0 λ0 表示矢量大小变为原来的 λ \lambda λ 倍,方向不变。矢量每个分量都乘以0 ,变为 0 \mathbf{0} 0 矢量。每个分量都乘以 − 1 -1 1 ,矢量大小不变,方向相反。两个矢量相加,则对应分量相加,满足平行四边形法则。两个大小相等,方向相反矢量相加,变为 0 \mathbf{0} 0 矢量。在二维平面内大家都能熟练运用这些规则,可以说达到如火纯青程度。

线性代数中向量的运算规则必须遵循这些基本运算规则,因为线性代数是研究矢量的,如果不遵循这些规则,将无法研究矢量。线性代数采用高度抽象的方法来研究矢量,可以不借助几何图形,这样做的好处是,研究方法具有高度的可扩展性,可应用于 m \mathbf{m} m 维空间。坏处是由于高度抽象,难以借助几何图形建立感性认识,学习难度很大。本书借助二维或三维空间内矢量的合成和分解两个“逆变换”,做到数形结合,描述线性代数后面的几何图像。

向量及运算规则

向量向坐标轴投影,得到每个分量,所有分量刻画向量。二维向量用两个有序数表示,如向量 ( 2 , 3 ) (2,3) (2,3) ,表示 x x x轴分量为2, y y y轴分量为3。三维向量用三个有序数表示,如向量 ( 2 , 3 , − 4 ) (2,3,-4) (2,3,4) ,表示 x x x轴分量为2, y y y轴分量为3, z z z轴分量为-4。这种定义向量的方式,方便推广到高维空间。

定义 向量 m m m 个有序数 v 1 , v 2 , ⋯   , v m v_1, v_2, \cdots, v_m v1,v2,,vm 构成的数组称为 m m m 维向量,这 m m m 个数称为 m m m 个分量,第 i i i 个数 v i v_i vi 称为第 i i i 个分量,向量记为 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1, v_2, \cdots, v_m) v=(v1,v2,,vm)

分量全为实数的向量称为实向量,分量为复数的向量称为复向量。本书中除特别指明者外,一般只讨论实向量。向量用黑体小写字母 v , u , w \mathbf{v},\mathbf{u},\mathbf{w} v,u,w 等表示。

特别的,每个分量都为0的向量是 0 \mathbf{0} 0 向量, 0 = ( 0 , 0 , ⋯   , 0 ) \mathbf{0} = (0, 0, \cdots, 0) 0=(0,0,,0)

几何中,可随意平行移动的有向线段作为向量的几何形象,因此,当 m ≤ 3 m \le 3 m3 时,可以把有向线段作为向量的几何形象。但当 m > 3 m > 3 m>3 时,就想象不出这种几何形象,但可以沿用几何术语。

根据矢量只有每个对应分量相等,两个矢量才相等,定义向量相等。

定义 向量相等 向量 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1, v_2, \cdots, v_m) v=(v1,v2,,vm) 和向量 w = ( w 1 , w 2 , ⋯   , w m ) \mathbf{w} = (w_1, w_2, \cdots, w_m) w=(w1,w2,,wm) 相等,当且仅当
v = w ⟺ ( v 1 = w 1 , v 2 = w 2 , ⋯   , v m = w m ) \mathbf{v=w} \Longleftrightarrow (v_1=w_1, v_2=w_2, \cdots, v_m=w_m) vw(v1=w1,v2=w2,,vm=wm)
只有维数相同的向量才可能相等, ( 2 , 3 , 0 ) (2,3,0) (2,3,0) ( 2 , 3 ) (2,3) (2,3) 是不同的向量。分量的顺序很重要,如 ( 2 , 3 ) (2,3) (2,3) ( 3 , 2 ) (3,2) (3,2) 是不同的向量。

向量加法和数乘

根据矢量相加规则,定义两个向量加法规则,即对应分量相加。

定义 向量加法 向量 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1, v_2, \cdots, v_m) v=(v1,v2,,vm) 与向量 w = ( w 1 , w 2 , ⋯   , w m ) \mathbf{w} = (w_1, w_2, \cdots, w_m) w=(w1,w2,,wm) 之和等于
v + w = ( v 1 + w 1 , v 2 + w 2 , ⋯   , v m + w m ) \mathbf{v+w} = (v_1+w_1, v_2+w_2, \cdots, v_m+w_m) v+w=(v1+w1,v2+w2,,vm+wm)
例如: ( 0 , 1 ) + ( 1 , 2 ) = ( 0 + 1 , 1 + 2 ) = ( 1 , 3 ) (0,1)+(1,2)=(0+1,1+2)=(1,3) (0,1)+(1,2)=(0+1,1+2)=(1,3)

根据定义,向量加法显然满足交换律和结合律,
v + w = w + v ( v + u ) + w = v + ( u + w ) \mathbf{v+w} = \mathbf{w+v} \\ \mathbf{(v+u)+w} = \mathbf{v+(u+w)} v+w=w+v(v+u)+w=v+(u+w)
根据两个大小相等,方向相反矢量相加,等于 0 \mathbf{0} 0 矢量,定义向量的相反向量。

定义 相反向量 向量 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1, v_2, \cdots, v_m) v=(v1,v2,,vm) 的相反向量为 w = ( − v 1 , − v 2 , ⋯   , − v m ) \mathbf{w} = (-v_1, -v_2, \cdots, -v_m) w=(v1,v2,,vm) ,则 v + w = 0 \mathbf{v} + \mathbf{w} = \mathbf{0} v+w=0

根据相反向量定义向量减法

定义 向量减法 v − w = v + ( − w ) \mathbf{v-w} = \mathbf{v} + (\mathbf{-w}) vw=v+(w)

所以向量减法就是加上相反向量,可以看作加法,故本书除特别指明者外,一般只讨论向量加法。

根据矢量大小满足勾股定理,定义向量大小,向量大小也称向量长度。

定义 向量长度 分量平方和的平方根为向量长度,向量 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1, v_2, \cdots, v_m) v=(v1,v2,,vm) 的长度为 v 1 2 + ⋯ + v m 2 \sqrt{v_1^2 + \cdots + v_m^2} v12++vm2 ,记为 ∥ v ∥ \|\mathbf{v}\| v ,也称向量范数。

例如:向量 ( 3 , 4 ) (3,4) (3,4) 的长度为 3 2 + 4 2 = 25 = 5 \sqrt{3^2+4^2} = \sqrt{25} =5 32+42 =25 =5

重要性质 只有 0 \mathbf{0} 0 向量的长度为0,其他向量长度均大于0。

根据三角不等式(两边之和大于第三边,之差小于第三边)得
∥ v + w ∥ ≤ ∥ v ∥ + ∥ w ∥ ∣ ∥ v ∥ − ∥ w ∥ ∣ ≤ ∥ v − w ∥ \|\mathbf{v+w}\| \le \|\mathbf{v}\|+\|\mathbf{w}\| \\ |\|\mathbf{v}\|-\|\mathbf{w}\|| \le \|\mathbf{v-w}\| vwv+wvwvw

根据每个分量都乘以相同的实数 λ \lambda λ 表示矢量长度变为原来的 λ \lambda λ 倍,当 λ ≥ 0 \lambda \ge 0 λ0,向量方向不变,否则方向相反, 定义向量数乘。

定义 向量数乘 每个分量都乘以相同的实数 λ \lambda λ λ v = ( λ v 1 , λ v 2 , ⋯   , λ v m ) \lambda \mathbf{v} = (\lambda v_1, \lambda v_2, \cdots, \lambda v_m) λv=(λv1,λv2,,λvm)

向量 λ v \lambda\mathbf{v} λv 的长度为
∥ λ v ∥ = ( λ v 1 ) 2 + ⋯ + ( λ v m ) 2 = ∣ λ ∣ ∥ v ∥ \|\lambda \mathbf{v}\| = \sqrt{(\lambda v_1)^2 + \cdots+ (\lambda v_m)^2}= |\lambda|\|\mathbf{v}\| λv=(λv1)2++(λvm)2 =λv
例如:向量 ( 3 , 4 ) (3,4) (3,4) 的2倍数乘为 ( 2 ∗ 3 , 2 ∗ 4 ) = ( 6 , 8 ) (2*3,2*4) = (6,8) (23,24)=(6,8) ,长度为10,是原向量长度的2倍,方向不变。该向量的-2倍数乘为 ( − 2 ∗ 3 , − 2 ∗ 4 ) = ( − 6 , − 8 ) (-2*3,-2*4) = (-6,-8) (23,24)=(6,8) ,长度为10,是原向量长度的2倍,方向相反。

根据定义,向量数乘显然满足结合律和分配率,
α ( β v ) = ( α β ) v ( α + β ) v = α v + β v α ( v + w ) = α v + α w \mathbf{\alpha (\beta v)} = \mathbf{(\alpha \beta) v} \qquad \\ \mathbf{(\alpha + \beta)v} = \mathbf{\alpha v+ \beta v} \qquad \\ \mathbf{\alpha (v+w)} = \mathbf{\alpha v+ \alpha w} α(βv)=(αβ)v(α+β)v=αv+βvα(v+w)=αv+αw
这些定义和运算规则看似简单,却是整个线性代数的基础,希望大家重视。

定义 单位向量 长度为1的向量为单位向量。

如向量 ( 0 , 1 ) (0,1) (0,1) ( 3 , 4 ) / 5 (3,4)/5 (3,4)/5 ( cos ⁡ θ , sin ⁡ θ ) (\cos\theta,\sin\theta) (cosθ,sinθ) 均为单位向量。

重要性质 对任意向量可单位化。
u = v / ∥ v ∥ 是 单 位 向 量 , 方 向 和 向 量 v 相 同 , 此 时 λ = 1 / ∥ v ∥ \mathbf{u} = \mathbf{v}/\|\mathbf{v}\| \qquad 是单位向量,方向和向量 \mathbf{v} 相同,此时 \lambda = 1/\|\mathbf{v}\| u=v/vvλ=1/v
比如向量 v = ( 2 , 3 ) \mathbf{v}=(2,3) v=(2,3) ,长度为 v = 2 2 + 3 2 = 13 \mathbf{v} = \sqrt{2^2+3^2} = \sqrt{13} v=22+32 =13 ,所以单位向量 u = ( 2 , 3 ) / 13 \mathbf{u}=(2,3)/\sqrt{13} u=(2,3)/13

内积

定义 向量距离 向量 v , w \mathbf{v},\mathbf{w} v,w 之间距离为向量 v − w \mathbf{v-w} vw 的长度 d ( v , w ) = ∥ v − w ∥ d(\mathbf{v,w}) = \|\mathbf{v-w}\| d(v,w)=vw
d ( v , w ) = ∥ v − w ∥ = ( v 1 − w 1 ) 2 + ( v 2 − w 2 ) 2 + ⋯ + ( v m − w m ) 2 = ( v 1 2 + v 2 2 + ⋯ + v m 2 ) + ( w 1 2 + w 2 2 + ⋯ + w m 2 ) − 2 ( v 1 w 1 + v 2 w 2 + ⋯ + v m w m ) = ∥ v ∥ 2 + ∥ w ∥ 2 − 2 ( v , w ) d(\mathbf{v,w}) = \|\mathbf{v-w}\| \\ = \sqrt{(v_1-w_1)^2+ (v_2-w_2)^2+ \cdots+ (v_m-w_m)^2}\\ = \sqrt{(v_1^2+ v_2^2+ \cdots+ v_m^2)+(w_1^2+ w_2^2+ \cdots+ w_m^2)-2(v_1w_1+ v_2w_2+ \cdots+ v_mw_m)}\\ = \sqrt{\|\mathbf{v}\|^2+\|\mathbf{w}\|^2-2(\mathbf{v},\mathbf{w})} d(v,w)=vw=(v1w1)2+(v2w2)2++(vmwm)2 =(v12+v22++vm2)+(w12+w22++wm2)2(v1w1+v2w2++vmwm) =v2+w22(v,w)

公式最后一项和定义为两个向量内积,内积也称点积,是个数。

定义 内积 两个向量内积 ( v , w ) = v 1 w 1 + v 2 w 2 + ⋯ + v m w m (\mathbf{v},\mathbf{w})=v_1w_1+ v_2w_2+ \cdots+ v_mw_m (v,w)v1w1+v2w2++vmwm

显然 ∥ v ∥ = ( v , v ) \|\mathbf{v}\| = \sqrt{(\mathbf{v},\mathbf{v})} v=(v,v) ,即范数等于内积平方根。

可见内积可以定义范数,范数又可以定义距离,内积是最基本的运算。

向量 v = ( 1 , 2 ) , w = ( 3 , − 4 ) \mathbf{v}=(1,2), \mathbf{w}=(3,-4) v=(1,2),w=(3,4) ,内积 ( v , w ) = 1 ∗ 3 + 2 ∗ − 4 = − 5 (\mathbf{v},\mathbf{w})=1*3+2*-4=-5 (v,w)=13+24=5

根据定义,内积满足交换律和结合律,
( v , w ) = ( w , v ) ( λ v , w ) = λ ( v , w ) ( v , w + u ) = ( v , w ) + ( v , u ) \mathbf{(v,w)} = \mathbf{(w,v)} \\ \mathbf{(\lambda v,w)} = \lambda\mathbf{(v,w)} \\ \mathbf{(v,w+u)} = \mathbf{(v,w)} + \mathbf{(v,u)} (v,w)=(w,v)(λv,w)=λ(v,w)(v,w+u)=(v,w)+(v,u)
什么情况下两个向量的内积为0?显然任一向量为 0 \mathbf{0} 0 向量时,内积为0。两个向量均不为 0 \mathbf{0} 0 向量时,内积能为0吗?向量 v = ( 1 , 0 ) , w = ( 0 , 1 ) \mathbf{v}=(1,0),\mathbf{w}=(0,1) v=(1,0),w=(0,1) ( v , w ) = 1 ∗ 0 + 0 ∗ 1 = 0 (\mathbf{v},\mathbf{w})=1*0+0*1=0 (v,w)=10+01=0 ,所以答案是肯定的。内积为0时,两个向量有什么关系呢?

向量 v − w , v , w \mathbf{v-w},\mathbf{v},\mathbf{w} vwvw 构成三角形,根据余弦定理,有如下关系
∥ v − w ∥ 2 = ∥ v ∥ 2 + ∥ w ∥ 2 − 2 ∥ v ∥ ∥ w ∥ cos ⁡ ( v , w ) \|\mathbf{v-w}\|^2 = {\|\mathbf{v}\|^2+\|\mathbf{w}\|^2-2\|\mathbf{v}\|\|\mathbf{w}\|\cos(\mathbf{v},\mathbf{w})} vw2=v2+w22vwcos(v,w)
重要性质
( v , w ) = ∥ v ∥ ∥ w ∥ cos ⁡ ( v , w ) cos ⁡ ( v , w ) 是 向 量 v , w 之 间 夹 角 的 余 弦 。 \mathbf{(v,w)} = \|\mathbf{v}\|\|\mathbf{w}\|\cos(\mathbf{v},\mathbf{w})\\ \cos(\mathbf{v},\mathbf{w}) 是向量 \mathbf{v},\mathbf{w} 之间夹角的余弦。 (v,w)=vwcos(v,w)cos(v,w)v,w
重要性质:两个向量垂直时,内积为0;夹角小于90度时内积为正;大于90度时为负。

物理学中,如何求力做的功?就是力与位移的内积!力垂直于位移时,做功为0。这就是内积的物理意义。

物理学中,如何求力在坐标轴的分量,也称力在坐标轴的投影,就是力乘以力与坐标轴夹角的余弦!

重要性质:向量 v \mathbf{v} v 为单位向量时,内积为投影, ( v , w ) = ∥ v ∥ ∥ w ∥ cos ⁡ ( v , w ) = ∥ w ∥ cos ⁡ ( v , w ) \mathbf{(v,w)} = \|\mathbf{v}\|\|\mathbf{w}\|\cos(\mathbf{v},\mathbf{w}) = \|\mathbf{w}\|\cos(\mathbf{v},\mathbf{w}) (v,w)=vwcos(v,w)=wcos(v,w)

重要性质:向量 v , w \mathbf{v,w} v,w 为单位向量时,内积为余弦, ( v , w ) = cos ⁡ ( v , w ) \mathbf{(v,w)} = \cos(\mathbf{v},\mathbf{w}) (v,w)=cos(v,w) ,内积越大时,两个向量夹角越小, 向量越相似。所以内积可以作为两个向量相似程度的度量。

余弦绝对值小于等于1,得到重要不等式
∣ ( v , w ) ∣ ≤ ∥ v ∥ ∥ w ∥ |\mathbf{(v,w)}|\le \|\mathbf{v}\|\|\mathbf{w}\| (v,w)vw

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值