sgu 194 网络流+有下界+循环流+无源汇

循环流无视掉即可。因为入出点相连就是循环的了。


构图:

 a->q 容量为c,下界为b,改为a->q容量为c-b,同时记录从a出去的下界流量out[a]+=b,  进入q的下界流量in[q]+=b


最后扫描整个网络图,如果in[i]>out[i],那么就建立超级S,S->i的边,容量为in[i]-out[i]。

否则简历超级T,i->T的容量为out[i]-in[i]即可。


接下来就是套板子,顺便略加修改。


一个修改是,因为这题要输出原来每个边的流量,所以建边的时候,要记录每个边的编号,所以要导入id

	void add_edge(int from, int to, int cap, int id) {
		edges.push_back((Edge){from, to, cap, 0, id});
		edges.push_back((Edge){to, from, 0, 0, id});
		m = edges.size();
		G[from].push_back(m-2);
		G[to].push_back(m-1);
	}

读入也略加修改即可


		for (int i = 1; i <= M; ++ i)
		{
			int s,t,b,c;
			scanf("%d%d%d%d", &s, &t, &b, &c);
			liu[i]=b;
			isap.add_edge(s,t,c-b,i);
			chu[s]+=b;
			jin[t]+=b;
		}
		for (int i = 1; i <= n; ++ i)
		{
			if (jin[i]>chu[i])
				isap.add_edge(0, i, jin[i]-chu[i], 0);
			else isap.add_edge(i, n + 1, chu[i] - jin[i], 0);
		}

最后遍历所有的边,如果那个边的编号为0,就是新添加的边,不算。

否则,如果cap为0,则为反向边,我们需要所有正向边中的flow的数值。



然后贴上板子AC这题即可。

#include <bits/stdc++.h>
#include <ext/pb_ds/priority_queue.hpp>
#include <tr1/unordered_map>
using std::tr1::unordered_map;
//using std::setiosflags;
//using std::setprecision;
using std::sort;
using std::max;
using std::min;
using std::cout;
using std::stack;
using std::cin;
using std::endl;
using std::swap;
using std::pair;
using std::vector;
using std::set;
using std::map;
using std::multiset;
using std::unique;
using std::queue;
using std::greater;
using std::string;
using std::priority_queue;
using std::lower_bound;//返回第一个不小于
using std::upper_bound;//返回第一个大于
using std::max_element;
using std::min_element;
using __gnu_pbds::pairing_heap_tag;
#define x first
#define y second
#define Hash unordered_map
#define clr(x) memset(x,0,sizeof(x))
typedef unsigned long long uLL;
typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef __gnu_pbds::priority_queue<pii, greater<pii>, pairing_heap_tag> Heap;//小根堆
typedef Heap::point_iterator Hit;
const Hit null;
const double PI = acos(-1);
const LL LINF = 0x3f3f3f3f3f3f3f3fll;//4e18
const int INF = 0x3f3f3f3f;//1e9
const double eps = 1e-10;
#define prln(x)	cout<<#x<<" = "<<x<<endl
#define pr(x)	cout<<#x<<" = "<<x<<" "

const int maxn = 205;
int n, M;
int liu[maxn*maxn];

//调用方法:
//init(n) 初始化 n 为节点数
//clear_flow() 清空所有边的流量
//add_edge(from, to, cap) 添加边from -> to 容量为cap
//maxflow(s, t) 返回s->t的最大流
//void mincut(vector<int>& ans) // 调用完maxflow后才可以用,ans里面存最小割
//print() 打印整张图,调试用
struct Edge { int from, to, cap, flow, id; };
struct ISAP {
	int n, m, s, t;
	vector<Edge> edges;
	vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
	bool vis[maxn];        // BFS使用
	int d[maxn];           // 从起点到i的距离
	int cur[maxn];        // 当前弧指针
	int p[maxn];          // 可增广路上的上一条弧
	int num[maxn];        // 距离标号计数
	void add_edge(int from, int to, int cap, int id) {
		edges.push_back((Edge){from, to, cap, 0, id});
		edges.push_back((Edge){to, from, 0, 0, id});
		m = edges.size();
		G[from].push_back(m-2);
		G[to].push_back(m-1);
	}
	bool bfs() {
		memset(vis, 0, sizeof(vis));
		queue<int> q;
		q.push(t);
		vis[t] = 1;
		d[t] = 0;
		while(!q.empty()) {
			int x = q.front(); q.pop();
			for(int i = 0; i < G[x].size(); i++) {
				Edge& e = edges[G[x][i]^1];
				if(!vis[e.from] && e.cap > e.flow) {
					vis[e.from] = 1;
					d[e.from] = d[x] + 1;
					q.push(e.from);
				}
			}
		}
		return vis[s];
	}
	void init(int n) {
		this->n = n;
		for(int i = 0; i < n; i++) G[i].clear();
		edges.clear();
	}
	void clear_flow() {
		for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;    
	}
	int augment() {
		int x = t, a = INF;
		while(x != s) {
			Edge& e = edges[p[x]];
			a = min(a, e.cap-e.flow);
			x = edges[p[x]].from;
		}
		x = t;
		while(x != s) {
			edges[p[x]].flow += a;
			edges[p[x]^1].flow -= a;
			x = edges[p[x]].from;
		}
		return a;
	}
	int maxflow(int s, int t) {//找到的最大流大于need就停止,如果没有限制,删去含有need的地方
		this->s = s; this->t = t;
		int flow = 0;
		bfs();
		memset(num, 0, sizeof(num));
		for(int i = 0; i < n; i++) num[d[i]]++;
		int x = s;
		memset(cur, 0, sizeof(cur));
		while(d[s] < n) {
			if(x == t) {
				flow += augment();
				//if(flow >= need) return flow;
				x = s;
			}
			int ok = 0;
			for(int i = cur[x]; i < G[x].size(); i++) {
				Edge& e = edges[G[x][i]];
				if(e.cap > e.flow && d[x] == d[e.to] + 1) { // Advance
					ok = 1;
					p[e.to] = G[x][i];
					cur[x] = i; // 注意
					x = e.to;
					break;
				}
			}
			if(!ok) { // Retreat
				int m = n-1; // 初值注意
				for(int i = 0; i < G[x].size(); i++) {
					Edge& e = edges[G[x][i]];
					if(e.cap > e.flow) m = min(m, d[e.to]);
				}
				if(--num[d[x]] == 0) break;//gap优化
				num[d[x] = m+1]++;
				cur[x] = 0; // 注意
				if(x != s) x = edges[p[x]].from;
			}
		}
		return flow;
	}
	void mincut(vector<int>& ans) { // 调用完maxflow后才可以用,ans里面存最小割
		bfs();
		for(int i = 0; i < edges.size(); i++) {
			Edge& e = edges[i];
			if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.push_back(i);
		}
	}
	void print() {
		printf("Graph:\n");
		for(int i = 0; i < edges.size(); i++)
			printf("%d->%d, %d, %d\n", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
	}
	void doit()
	{
		int flag=1;	
		for (int i = 0; i <= n + 1; ++ i)
		{
			for (auto x : G[i])
			{
				int s = edges[x].from;
				int t = edges[x].to;
				int c = edges[x].cap;
				int f = edges[x].flow;
				if (s==0)
				{
					if (c!=f)	flag=0;
					continue;
				}
				if (t==n+1)
				{
					if (c!=f)	flag=0;
					continue;
				}
				if (c==0)	continue;
				liu[edges[x].id] += f;
			}
		}
		if (flag)
		{
			printf("YES\n");
			for (int i = 1; i <= M; ++i)
				printf("%d\n", liu[i]);
		}
		else printf("NO\n");
	}
} isap;

int jin[maxn], chu[maxn];

int main()
{
	int T=0;
	while (~scanf("%d%d", &n, &M))
	{
		memset(chu,0,sizeof(chu));
		memset(jin, 0, sizeof(jin));
		isap.init(n+2);
		for (int i = 1; i <= M; ++ i)
		{
			int s,t,b,c;
			scanf("%d%d%d%d", &s, &t, &b, &c);
			liu[i]=b;
			isap.add_edge(s,t,c-b,i);
			chu[s]+=b;
			jin[t]+=b;
		}
		for (int i = 1; i <= n; ++ i)
		{
			if (jin[i]>chu[i])
				isap.add_edge(0, i, jin[i]-chu[i], 0);
			else isap.add_edge(i, n + 1, chu[i] - jin[i], 0);
		}
		isap.maxflow(0, n+1);
		isap.doit();
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值