正态分布与泊松分布的关系

正态分布和泊松分布在统计学中都有广泛应用。正态分布是连续型概率分布,以μ为均值,σ为标准差。泊松分布是离散型概率分布,适用于描述单位时间内随机事件发生的次数。当泊松分布的参数λ足够大时,它可以被正态分布近似。一般认为,当λ大于或等于5时,这种近似是合适的。两者的内在联系在于,泊松分布随着λ的增大,逐渐逼近均值和方差均为λ的正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正态分布

正态分布(normal distribution)又名高斯分布(Gaussian distribution)、正规分布,是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量。

若随机变量X服从一个位置参数为 μ \mu μ 、尺度参数为 σ \sigma σ的正态分布,记为:

X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2)

则其概率密度函数为

f ( x ) = 1 σ 2 π    e − ( x − μ ) 2 2 σ 2  ⁣ {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}\!} f(x)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值