计算机视觉课程作业 基于词袋模型的图像分类算法

本文探讨了计算机视觉中基于内容的图像分类技术,重点关注了词袋模型在图像分类中的应用。文章介绍了图像分类的基本流程,包括特征提取、视觉词典构建、图像表示和分类器设计。特别地,详细阐述了SIFT特征提取算法,包括尺度空间表示、关键点检测和描述子生成。实验部分展示了如何利用OpenCV和LibSVM在Windows平台上实现SIFT特征提取、KMeans聚类和SVM分类器训练,以达到较高的分类准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

随着计算机与互联网技术以及数字图像获取技术的快速发展,海量的数字图像出现在互联网上及人们周边的生活中。依靠传统的人工方式对图像进行分类、组织和管理非常耗时耗力,所以希望能够通过计算机对图像中的目标内容进行自动地分析处理,从而将图像数据快速、规范、自动地进行组织、归类和管理。

早期的图像分类主要依赖于文本特征,采用人工方式为图像标注文本,使用的是基于文本的图像分类模式。由于图像标注需要人为地辨识并为其选定关键字,故其分类的效果不是非常理想,且耗时严重。随着计算机技术和数字化图像技术的发展,图像库的规模越来越大,人工标注的方式对图像进行分类已不可能,人们开始逐渐将研究的重点转移到基于图像内容分析的自动分类研究上。

基于内容的图像分类技术不需要进行人工标注的语义信息,而是直接对图像所包含的信息进行处理和分析,利用图像底层视觉特征来进行图像分类。图像分类技术研究是一个集中了机器学习、模式识别、计算机视觉和图像处理等多个研究领域的交叉研究方向。

2.相关基础理论介绍

图像分类是机器视觉中一个重要的问题,其基本概念是,使用计算机自动把图像划分到特定的概念类别中。图像分类问题可以描述为:给定若干个学习好的图像类别,对输入的新图像序列进行处理,并对其做出一个决策,判断一个已知的类别是否出现在数据中。图像分类算法分为训练和测试两个阶段,其基本流程如图1所示。


图1 图像分类算法整体流程图

2.1基于词袋模型的图像分类

词袋模型最初用于文本分类中,然后逐步引入到了图像分类任务中。在文本分类中,文本被视为一些不考虑先后顺序的单词集合。而在图像分类中,图像被视为是一些与位置无关的局部区域的集合,因此这些图像中的局部区域就等同于文本中的单词了。在不同的图像中,局部区域的分布是不同的。因此,可以利用提取的局部区域的分布对图像进行识别。图像分类和文本分类的不同点在于,在文本分类的词袋模型算法中,字典是已存在的,不需要通过学习获得;而在图像分类中,词袋模型算法需要通过监督或非监督的学习来获得视觉词典。

基于词袋模型的图像分类算法一般分为四步:第一步,对图像进行局部特征向量的提取。为了取得很好的分类效果,提取的特征向量需要具备不同程度的不变性,如旋转,缩放,平移等不变性;第二步,利用上一步得到的特征向量集,抽取其中有代表性的向量,作为单词,形成视觉词典;第三步,对图像进行视觉单词的统计,一般判断图像的局部区域和某一单词的相似性是否超过某一阈值。这样即可将图像表示成单词的分布,即完成了图像的表示。第四步,设计并训练分类器,利用图像中单词的分布进行图像分类。

2.2图像SIFT特征提取算法

SIFT算法的核心是将一幅图像用描述子表示,这些特征点具有尺度不变性,就相当于图像本身,但是相对于图像文件本身,在计算机中处理起来方便的多了。详细的SIFT实现过程分为如下四个步骤:

1、检测尺度空间的极值点;

2、抽取稳定的关键点;

3、为每个关键点指定一个或者多个方向;

4、生成特征点描述子。

2.2.1 图像的尺度空间表示

尺度空间理论来源于计算机视觉研究领域,其理论主要用于引入多尺度概念来表示图像,并模拟图像数据的多尺度特征。通常情况下,在图像空间的某一尺度下很难检测到另一尺度下的特征,引入多尺度图像技术可以高效的获取图像特征。

经过Koendetink等人的验证,高斯卷积核是实现尺度变化的唯一线性核,一副图像的尺度空间可以定义为:

               (1)

其中是尺度高斯可变高斯函数࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值