阅读分享:A Frustratingly Easy Approach for Entity and Relation Extraction-NAACL2021

A Frustratingly Easy Approach for Entity and Relation Extraction

跳过背景、相关工作,直接来看方法

Ideas:

  1. different entity pairs,different contextual representations. NER和RE两个模型分别编码,即RE不共享NER得到的编码表示。在这里插入图片描述

  2. using additional markers to highlight the subject and object (Zhang et al., 2019; Soares et al., 2019; Peters et al., 2019). Define text markers as <S:ei>, </S:ei>, <O:ej>, and </O:ej>。实体对subject 和object 的两个start marker token拼接作为这对实体关系的表示。
    在这里插入图片描述

  3. 句子中多个实体对的情况,因为要插入特定的marker,那就要训练多次RE模型(像上图中要训练两次)——提出近似模型:记录span始末位置,并使用注意力约束(文本仅关注文本,不关注marker;marker关注文本和它关联的4个marker)。这样文本表示独立于实体marker表示,文本表示就可以重用。—— 一次训练,批处理多对实体。性能的小幅下降换来速度的提升。
    在这里插入图片描述

  4. 仅扩大输入窗口来整合跨句信息.

实验及分析设置很全面(还没看,先不写了…)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值