A Frustratingly Easy Approach for Entity and Relation Extraction 论文阅读

75 篇文章 7 订阅
61 篇文章 2 订阅

一、概述

论文:https://paperswithcode.com/paper/a-frustratingly-easy-approach-for-joint
解读:https://mp.weixin.qq.com/s/xwljKL3FjY-Nw-Zll4x3pQ
原版本代码:https://github.com/princeton-nlp/PURE
中文版本代码:https://github.com/suolyer/PyTorch_BERT_Pipeline_IE

二、QA

问题一:关系抽取到低怎么利用实体的位置信息的?

在这里插入图片描述

主要的思想就是引入实体位置+实体类别来做pipeline的关系分类,因为这两个信息在关系分类里面是非常重要的。

问题二:实体识别里面x_start和x_end是什么意思?

在这里插入图片描述

答:可能引入了起始的位置(start,end)信息,并且有利用span的表征的信息来做实体识别。

三、消融实验

3.1 不同引入实体位置和类型的方法比较:直接通过mark引入类别和位置信息比在loss测引入信息效果更好。

TEXT纯文本:我们使用实体模型(第3.2节)中定义的跨度表示,并将主语和对象的隐藏表示及其元素乘法相连:[he(si),he(sj),he(si) ⊙ he(sj)]。这与Luan等人的关系模型相似。(2018年,2019年)。
TEXTETYPE:我们将TEXT的跨对re-发送与实体类型嵌入ψ(ei),ψ(ej) ∈ RdE (dE = 150)连接起来。
MARKERS标记:我们在输入层使用未键入的实体类型(,,),并将两个跨度起点的表示连接起来。
MARKERSETYPE:我们将标记的跨对表示与实体类型嵌入ψ(ei), ψ(ej ) ∈ RdE (dE = 150) 连接起来。
MARKERSELOSS:我们还考虑使用未键入标记的变体,但添加另一个FFNN通过辅助损失来预测主体和对象的实体类型。这与实体信息在多任务学习中的使用方式相似(Luan等人,2019年;Wadden等人,2019年)。
类型标记:这是我们在第3.2节中用类型实体标记取消描述的最终模型。

● 结论:
○ 通过引入typeMarkers来引入类别和位置信息,这种效果最好
○ 利用标准gold实体来训练关系模型,效果最好

3.2 共享encoder并不能带来提升:可能两个任务所侧重的特征各有不同在这里插入图片描述

3.3 关系预测的实体用gold还是用pred的结果?发现直接用gold反而效果最好,可能是pred质量不好会影响效果,例如没有预测出实体,导致没有关系模型的数据或者引入了额外的噪声。

在这里插入图片描述

● 结论:
○ 10层交叉验证,拿到实体模型结果,效果也比gold差
○ 尝试利用更多的实体对?感觉像是采样更多实体对来做关系预测,然后效果也没有什么提升。

3.4 上下文交叉句子特征的影响?发现window size也对实体或者关系的结果有影响。

在这里插入图片描述

实体模型:w=300
关系模型:w=100
效果最好

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值