《Python 深度学习》7.2.2 TensorBoard简介(代码)

1. 使用了TensorBoard的文本分类模型

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 2000 #作为特征的单词个数
max_len = 500 #在这么多单词之后截断文本

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
print(x_train.shape)    #(25000, 500)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)
print(x_test.shape) 

(25000, 500)

(25000, 500)

model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
#由于电脑内存过小,无法写入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值