python数据预处理

sklearn preprocessing

python数据预处理

一、标准化,均值去除和按方差比例缩放

1. scale 零均值单位方差

调用scale()函数之后,数据集对应每个特征列数值的均值为0,方差为1.

2.StandardScaler计算训练集的平均值和标准差,以便测试数据集使用相同的变换。

scale和StandardScaler可以用于回归模型中的目标值处理。


二、将数据特征缩放至某一范围(scalingfeatures to a range)

1. MinMaxScaler(最小最大值标准化)

公式:X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) ;

X_scaler = X_std/ (max - min) + min

2. MaxAbsScaler(绝对值最大标准化)

与上述标准化方法相似,但是它通过除以最大值将训练集缩放至[-1,1]。这意味着数据已经以0为中心或者是含有非常非常多0的稀疏数据。


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值