YOLOv5构建自己的数据集并训练

本文介绍了如何在YOLOv5环境中构建数据集,包括目录结构设定、数据集划分、XML标注文件转换,以及配置模型文件和训练过程。通过labelImg工具进行标注,使用split_train_val.py进行数据划分,voc_worktxt.py完成标注文件转换。在训练阶段,重点讲解了coco.yaml和yolo5l.yaml的配置,以及train.py的参数设置。最后提到了使用tensorboard进行训练过程的可视化。
摘要由CSDN通过智能技术生成

前言

本文默认已安装好Anaconda等python环境,并已下载好YOLO项目且可运行DEMO。接下来将着重在数据集构建的介绍上。

目录

前言

1.Environment

2.构建数据集

2.1 目录构建

2.2 数据集划分

2.3 标记文件转换

3. 配置模型文件及训练

4. 可视化


1.Environment

本文所用环境:代码版本V3.0,源码下载地址:https://github.com/ultralytics/yolov5.git
Pytorch:1.6.0
Cuda:10.1
Python:3.7
官方要求Python>=3.8 and PyTorch>=1.6.
通过git clone https://github.com/ultralytics/yolov5.git将YOLOv5源码下载到本地,创建好虚拟环境,并通过pip install -r requirements.txt安装依赖包


2.构建数据集

2.1 目录构建

本文数据标注使用labelImg,将标注中产生的*.xml文件放入Annotations里,将用于标注的图片放入images中,具体目

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值