Boss 直聘数据岗招聘信息分析(二)

通过对Boss直聘的数据岗招聘信息分析,发现重庆地区数据岗学历要求普遍较低,本科占比59%,学历与薪资关系显示本科学历岗位薪资更集中、稳定。工作经验、工作技能要求、薪资待遇和公司福利的可视化揭示了影响薪资的关键因素。
摘要由CSDN通过智能技术生成

数据分析思路

项目背景

上一篇爬取Boss数据直聘数据后,我们可以试着对这些数据进行分析并整理一些结论出来。我们的大致步骤如下:

  1. 清洗整理
  2. 确定分析目的与思路
  3. 进行数据分析
  4. 得出数据分析结论

分析思路

  1. 数据岗位基本就业情况:学历要求、工作经验要求、工作技能要求、薪资待遇、公司福利
    1. 学历要求:饼状图,学历要求的占比
    2. 工作经验要求:饼状图
    3. 工作技能要求:词云
    4. 薪资待遇:条形图
    5. 公司福利:词云,降序
    6. 工作经验要求:饼状图
    7. 工作技能要求:词云
    8. 薪资待遇:条形图
    9. 公司福利:词云,降序
  2. 了解影响薪资的关键因素,确定学习路线与技能树并进入合适公司做准备
    1. 学历与薪资散点图
    2. 工作经验要求与薪资散点图
    3. 工作技能要求 Top10 与薪资散点图
    4. 公司福利 Top10 与薪资散点图

代码与数据可视化

本次代码及数据可视化以 jupyter notebook 环境呈现。

  1. 读入Mongo数据并存入list中

项目介绍 该项目选用了和鲸社区关于数据分析位的数据集来进行分析。项目主要使用“job.csv”文件作为数据源,其中数据文件的主要栏位有职位、城市、公司、薪资、学历、工作经验、行业标签。其中本项目所使用的可计算的栏位为最低薪资、最高薪资、平均薪资、奖金率。 本项目所使用的可分类的栏位为职位、城市、学历、工作经验、行业标签。通过对数据进行清洗重塑和分析,再使用plotly等工具进行绘图,实现图表的交互式数据可视化,最后使用flask框架(利用了bootstrap)进行网页上的可视化展示。最后展示了关于数据分析位的人才需求分布情况、薪资情况以及发展前景。 项目来源:选用boss直聘网站的数据分析职位的招聘数据 数据结果总结 通过以上分析,可以发现,如果要成功进入数据分析行业,应该往北上广深行这几个城市考虑,这些城市的薪资水平高。 而行业方面应该着眼于互联网及电子商务等新兴行业,这些行业对该位的需求都比较大,而且薪资水平也普遍高。 该位对学历的门槛并不是很高,从市场需求来看,要求硕士的较少,而博士则是凤毛麟角。本科是一个分水岭。是否是本科,对薪资水平的影响还是很大的 不过这也从侧面反映了社会上学历的分布状况,本科生及大专生占绝对多数。 虽然市场需求量大,但是本科生就业压力也很大 工作经验对于该位而言非常重要,能否成功进入数据分析行业的关键门槛在于是否有工作经验,与薪资水平呈正相关。 而成功进入数据分析行业以后,只有在迈过3年这个坎,才会有比较大的突破。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值