EM算法估计混合高斯模型(GMM)

1、EM原理

EM本质是上是极大似然估计(MLE)概率模型有时即含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,只要show出测量数据,可以直接用极大似然估计法,或者用贝叶斯估计法估计模型参数。但是当模型含有隐变量时,就不能简单的用这些估计方法,EM算法就是含有隐变量的概率模型参数的极大似然估计法。
举个例子啥是隐变量,假设学校有100人,我们可以测出这100人的身高数据,我们都知道人的身高有时依赖于性别,但是不知道男女比例,这时男女比可以作为隐变量。

2、啥是混合高斯模型

先上表达式:
p ( x j ) = ∑ k = 1 M N ( x j ∣ μ k , Σ k ) P ( G k ) , j = 1 , 2 , … , N p(\boldsymbol{x_j})=\sum_{k=1}^{M}N(\boldsymbol{x_j}|\boldsymbol{\mu_k},\Sigma_k)P(G_k),j=1,2,\dots,N p(xj)=k=1MN(xjμk,Σk)P(Gk),j=1,2,,N
上式是混合高斯模型的pdf,M表示高斯模型的数量(很多时候可视作分类簇数量), P ( G k ) P(G_k) P(Gk)表示事件k发生的概率, μ k , Σ k \boldsymbol{\mu_k},\Sigma_k μk,Σk分别表示第k个高斯模型的均值和协方差矩阵。

3、EM算法求解GMM

先上似然函数:
L ( θ ) = ∏ i = 1 N ∑ z p ( x i , z ; θ ) L(\theta)=\prod_{i=1}^N\sum_zp(x_i,z;\theta) L(θ)=i=1Nzp(xi,z;θ)
取对数后:
l ( θ ) = l o g ∏ i = 1 N ∑ z p ( x i , z ; θ ) = ∑ i = 1 N l o g ∑ z p ( x i , z ; θ ) l(\theta)=log\prod_{i=1}^N\sum_zp(x_i,z;\theta)=\sum_{i=1}^Nlog\sum_zp(x_i,z;\theta) l(θ)=logi=1N

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值