学习笔记
文章平均质量分 96
Code我敲你
敢于竞争,善于转化
展开
-
LMS与RLS算法学习笔记
LMS与RLS算法学习笔记一、 研究目的1.1最陡下降法理论1.2$LMS算法$1.3$RLS算法$1.4研究目标二、代码解析三、结果一、 研究目的1.1最陡下降法理论LMS算法总是与最陡下降法联合使用,顾名思义,最陡下降法就是沿着性能曲面最陡放方向向下(曲面负梯度方向)搜索曲面的最低点。迭代过程首先从曲面上某个初始点(对应与初始权矢量w(0) )出发,沿着该点负梯度方向搜索至第一点(对应与...原创 2018-10-21 20:13:22 · 32487 阅读 · 18 评论 -
回答贴:关于LMS算法步长范围推导
最陡下降法矢量迭代公式:w(n+1)=w(n)+μ(−∇(n)) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ(−∇(n))其中梯度∇=Rw(n)−P\boldsymbol{\nabla}=\boldsymbol{Rw(n)-P}∇=Rw(n)−P代入上式:w(n+1)=w...原创 2019-05-23 11:25:57 · 4417 阅读 · 4 评论 -
EM算法估计混合高斯模型(GMM)
文章目录1、EM原理2、啥是混合高斯模型3、EM算法求解GMM4、实例1、EM原理EM本质是上是极大似然估计(MLE)概率模型有时即含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,只要show出测量数据,可以直接用极大似然估计法,或者用贝叶斯估计法估计模型参数。但是当模型含有隐变量时,就不能简单的用这些估计方法,EM算法就是含有隐变量的概率模型参数的极大似然估计法。举个例子啥是隐...原创 2019-06-28 09:42:19 · 1407 阅读 · 1 评论