回答贴:关于LMS算法步长范围推导

本文详细介绍了LMS算法的最陡下降法矢量迭代公式,探讨了当梯度为零时的维纳解,并通过坐标变换和平移旋转简化了系数矩阵。重点在于利用矩阵幂的性质,推导出步长μ的稳定条件:0<μ<λmax−1,其中λmax是R的最大特征值,确保算法在无限迭代时的稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最陡下降法矢量迭代公式:
w ( n + 1 ) = w ( n ) + μ ( − ∇ ( n ) ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ((n))
其中梯度 ∇ = R w ( n ) − P \boldsymbol{\nabla}=\boldsymbol{Rw(n)-P} =Rw(n)P代入上式:
w ( n + 1 ) = w ( n ) − 2 μ ( R w ( n ) − P ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}-2\mu(\boldsymbol{Rw(n)-P}) w(n+1)=w(n)2μ(Rw(n)P)
而梯度为零的地方为为维纳解 w ∗ = P / R w^*=\boldsymbol{P/R} w

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值