回答贴:关于LMS算法步长范围推导

最陡下降法矢量迭代公式:
w ( n + 1 ) = w ( n ) + μ ( − ∇ ( n ) ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ((n))
其中梯度 ∇ = R w ( n ) − P \boldsymbol{\nabla}=\boldsymbol{Rw(n)-P} =Rw(n)P代入上式:
w ( n + 1 ) = w ( n ) − 2 μ ( R w ( n ) − P ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}-2\mu(\boldsymbol{Rw(n)-P}) w(n+1)=w(n)2μ(Rw(n)P)
而梯度为零的地方为为维纳解 w ∗ = P / R w^*=\boldsymbol{P/R} w=P/R
所以:
w ( n + 1 ) = w ( n ) − 2 μ R ( w ( n ) − w ∗ ) = [ I − 2 μ R ] w ( n ) + 2 μ R w ∗ \begin{aligned} \boldsymbol{w(n+1)}&=\boldsymbol{w(n)}-2\mu\boldsymbol{R}(\boldsymbol{w(n)-w^*}) \\ &=[\boldsymbol{I-2\mu R}]w(n)+2\mu R w^* \end{aligned} w(n+1)=w(n)2μR(w(n)w)=[I2μR]w(n)+2μRw
由于上式 w ( n ) w(n) w(n)的系数矩阵不是对角阵(不是对角阵的话求解矩阵方程计算量会很大),所以这里我把 w w w坐标系通过平移和旋转变成主轴坐标 v ′ v' v,所以:
v ′ ( n + 1 ) = [ I − 2 μ Λ ] v ′ ( n + ) \boldsymbol{v'(n+1)}=[\boldsymbol{I-2\mu \Lambda}] \boldsymbol{v'(n+)} v(n+1)=[I2μΛ]v(n+)
重点来了,通过标量迭代推导:
v ′ ( n + 1 ) = [ I − 2 μ Λ ] n v ′ ( 0 ) \boldsymbol{v'(n+1)}=[\boldsymbol{I-2\mu \Lambda}]^n \boldsymbol{v'(0)} v(n+1)=[I2μΛ]nv(0)
通过观察上式,系数矩阵是一个 n n n次幂阵,为了使算法稳定,而不会因为迭代次数爆炸,所以:
lim ⁡ n → ∞ [ I − 2 μ Λ ] n = 0 \lim_{n\to \infty}[\boldsymbol{I-2\mu \Lambda}]^n=\boldsymbol{0} nlim[I2μΛ]n=0
或者写成标量表达:
lim ⁡ n → ∞ [ 1 − 2 μ λ k ] n = 0 \lim_{n\to \infty}[1-2\mu \lambda_k]^n=0 nlim[12μλk]n=0
所以:
∣ 1 − 2 μ λ k ∣ &lt; 1 , k = 0 , 1 , … |1-2\mu \lambda_k|&lt;1,k=0,1,\dots 12μλk<1,k=0,1,
终于推导出来了
0 &lt; μ &lt; λ m a x − 1 0&lt;\mu&lt;\lambda_{max}^{-1} 0<μ<λmax1
上式中, λ m a x \lambda_{max} λmax R \boldsymbol{R} R最大特征值。

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值