最陡下降法矢量迭代公式:
w ( n + 1 ) = w ( n ) + μ ( − ∇ ( n ) ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ(−∇(n))
其中梯度 ∇ = R w ( n ) − P \boldsymbol{\nabla}=\boldsymbol{Rw(n)-P} ∇=Rw(n)−P代入上式:
w ( n + 1 ) = w ( n ) − 2 μ ( R w ( n ) − P ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}-2\mu(\boldsymbol{Rw(n)-P}) w(n+1)=w(n)−2μ(Rw(n)−P)
而梯度为零的地方为为维纳解 w ∗ = P / R w^*=\boldsymbol{P/R} w
回答贴:关于LMS算法步长范围推导
最新推荐文章于 2025-03-19 08:54:45 发布