VEDIA数据集处理

先分享三个数据集的网址,第一个是我下数据集的,后两个是用来改数据集的标签格式的github,一个是darknet格式,一个是imagenet格式

vedia数据集下载地址

github

github2

我用的代码是yolov3,所以我需要darknet格式的标签

就是类别,加四个坐标参数,我修改了github2的代码,我只需要其中七类,所以我把其他类别的标签删了

 

# 1: car, 2:trucks, 4: tractors, 5: camping cars, 7: motorcycles, 8:buses, 9: vans, 10: others, 11: pickup, 23: boats , 201: Small Land Vehicles, 31: Large land Vehicles

import os
import pandas as pd


def update_annotations(filename):
	# with open('E:/数据集/VEDAI/annotation_ori/' + filename, 'r') as file:
	# 	data = file.read()

		# text = '\n'.join(' '.join(line.split()) for line in data.split('\n'))
		# text.replace('\t', ' ')

		# print(text)
		# output = open('E:/数据集/VEDAI/label/' + filename, 'w')
		# output.write(text)
		# output.close()

	data = pd.read_csv('E:/数据集/VEDAI/annotation_ori/' + filename, sep=' ', index_col=None, header=None, names=['x_center', 'y_center', 'orientation', 'class', 'is_contained', 'is_occluded', 'corner1_x', 'corner2_x', 'corner3_x', 'corner4_x', 'corner1_y', 'corner2_y', 'corner3_y', 'corner4_y'])

	# data['class'].replace(11, 3, inplace=True)
	# data['class'].replace(23, 6, inplace=True)
	# data['class'].replace(201, 11, inplace=True)
	# data['class'].replace(31, 12, inplace=True)
	data['class'].replace(1, 0, inplace=True)
	data['class'].replace(11, 1, inplace=True)
	data['class'].replace(2, 3, inplace=True)
	data['class'].replace(5, 2, inplace=True)
	data['class'].replace(4, 5, inplace=True)
	data['class'].replace(10, 4, inplace=True)
	data['class'].replace(23, 6, inplace=True)
	data['class'].replace(9, 7, inplace=True)
	# data['class'].replace(31, 9, inplace=True)
	# data['class'].replace(8, 8, inplace=True)
	# print(data['class'])

	# data['class'] = data['class'] - 1
	# data['x_center_ratio'] = data['x_center'].astype(float) / 1024.
	# data['y_center_ratio'] = data['y_center'].astype(float) / 1024.
	data['x_center_ratio'] = data['x_center'].astype(float) / 512.
	data['y_center_ratio'] = data['y_center'].astype(float) / 512.
	# data['width_ratio'] = (data[['corner1_x', 'corner2_x', 'corner3_x', 'corner4_x']].max(axis=1) - data[['corner1_x', 'corner2_x', 'corner3_x', 'corner4_x']].min(axis=1)) / 1024.
	# data['height_ratio'] = (data[['corner1_y', 'corner2_y', 'corner3_y', 'corner4_y']].max(axis=1) - data[['corner1_y', 'corner2_y', 'corner3_y', 'corner4_y']].min(axis=1)) / 1024.
	data['width_ratio'] = (data[['corner1_x', 'corner2_x', 'corner3_x', 'corner4_x']].max(axis=1) - data[['corner1_x', 'corner2_x', 'corner3_x', 'corner4_x']].min(axis=1)) / 512.
	data['height_ratio'] = (data[['corner1_y', 'corner2_y', 'corner3_y', 'corner4_y']].max(axis=1) - data[['corner1_y', 'corner2_y', 'corner3_y', 'corner4_y']].min(axis=1)) / 512.

	res = data.drop(['x_center', 'y_center', 'corner1_x', 'corner2_x', 'corner3_x', 'corner4_x', 'orientation', 'corner1_y', 'corner2_y', 'corner3_y', 'corner4_y', 'is_contained', 'is_occluded'], axis=1)
	res = res.drop(index=res.loc[(res['class'] >7)].index) #删除不要的标签
	# print(res)
	# if data['class'][0]>7:
	# 	print(data['class'][0],filename)
	# for i in range(len(data['class'])):
	# 	if data['class'][i]>7:
	# 		print(data['class'][i],filename)
	# if filename == '00000043.txt':
	# 	print(data['class'][0])
	# 	output = open('E:/数据集/VEDAI/labels/' + filename, 'w')
	# 	output.close()
	# else:
	res.to_csv('E:/数据集/VEDAI/labels/' + filename, sep=' ', index=False, header=None)


list = os.listdir('E:/数据集/VEDAI/annotation_ori/')
# list.remove('.DS_Store')  # for macOS
for filename in list:
	# print(filename)
	update_annotations(filename)

 

VEDAI数据集是一个用于目标检测的遥感图像数据集。在该数据集上,SuperYOLO模型实现了75.09%的准确率(以mAP50计),比其他大型模型如YOLOv5l、YOLOv5x和RS设计的YOLOrs高出10%以上。同时,SuperYOLO的参数大小和GFLOPs比YOLOv5x少了约18倍和3.8倍。这表明我们提出的模型在精度和速度之间取得了有利的权衡。\[1\] 在表一中,不同基线YOLO框架的模型大小和推理能力是以层数、参数大小和GFLOPs来评价的。YOLOv4虽然实现了最好的检测性能,但它比YOLOv5s多了169层,参数大小是YOLOv5s的7.4倍,GFLOPs是YOLOv5s的7.2倍。相比之下,YOLOv5s虽然mAP略低于YOLOv4和YOLOv5m,但它的层数、参数大小和GFLOPs都比其他模型小很多。因此,在实际应用中,更容易在船上部署YOLOv5s来实现实时性能。这证实了将YOLOv5s作为基线检测框架的合理性。\[2\] 最近,多模态数据在许多实际应用场景中被广泛利用,包括视觉问题回答、自动驾驶汽车、显著性检测和遥感分类。人们发现,结合多模态数据的内部信息可以有效地传递互补的特征,避免单一模态的某些信息被遗漏。\[3\] #### 引用[.reference_title] - *1* *2* *3* [Super Yolo论文翻译](https://blog.csdn.net/qq_41048761/article/details/130304993)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值