Java集合之TreeMap源码解析

TreeMap

非线程安全的不可重复元素的可排序键值对

继承AbstractMap,为Map的骨架实现;

实现了Cloneable,实现浅克隆;

实现了序列化接口,并自定义了readObject、writeObject方法

实现了NavigableMap接口(继承SortedMap),提供了双向查询遍历的相关方法,提供了取得正序及倒序的keySet方法

 


采用红黑树的数据结构,该数据结构是一颗自平衡二叉查找树(高度log2N),每个节点标注了红或黑的颜色。



红黑树的5个性质如下:

1、节点是红色或黑色

2、根节点是黑色

3、所有的叶子(NIL空节点)是黑色的

4、每个红色节点的两个儿子均为黑色,即不可能有连续的两个红色节点

5、从任一节点到其叶子(NIL空节点)的路径都包含相同数目的黑节点

      该性质为平衡的关键,需要注意理解是到NIL空节点的路径

      与性质4一起,可推得一个红色节点如果有孩子必然只能有两个黑孩子


TreeMap对红黑树的实现的分析

红黑树的插入

算法时间复杂度约为O(log2N),并且其与普通查找二叉树比较,插入的旋转次数很少

JDK1.6与JDK1.8基本类似,下面列出JDK1.6的代码:

public V put(K key, V value) {//插入或设置元素,返回原始value值(如果插入返回null)
        Entry<K,V> t = root;
        if (t == null) {//根元素为空时直接建立根元素
	    // TBD:
	    // 5045147: (coll) Adding null to an empty TreeSet should
	    // throw NullPointerException
	    //
	    // compare(key, key); // type check
            root = new Entry<K,V>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {//存在比较器
            do {//循环查找父元素
                parent = t;//设置父元素
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;//继续查找左边元素
                else if (cmp > 0)
                    t = t.right;//继续查找右边元素
                else
                    return t.setValue(value);//相等直接进行value设置
            } while (t != null);
        }
        else {//不存在比较器,按compareTo方法查找
            if (key == null)
                throw new NullPointerException();
            Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<K,V>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

    private void fixAfterInsertion(Entry<K,V> x) {//插入数据后的树形变化处理
        x.color = RED;//插入元素默认颜色为红色

        while (x != null && x != root && x.parent.color == RED) {//当父节点的颜色为红色时,需要进行变化
            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {//如果父元素为其父的左节点
                Entry<K,V> y = rightOf(parentOf(parentOf(x)));//取右节点(叔节点)
                if (colorOf(y) == RED) {//颜色为红
                    setColor(parentOf(x), BLACK);//父节点设置为黑色
                    setColor(y, BLACK);//右节点设置为黑色
                    setColor(parentOf(parentOf(x)), RED);//父元素的父元素设置为红色
                    x = parentOf(parentOf(x));//x设置为父元素的父元素,继续进行判定
                } else {//叔节点不可能为黑色,故下面为无叔节点情况,必然需要进行旋转
                    if (x == rightOf(parentOf(x))) {//如果当前元素为其父的右节点
                        x = parentOf(x);//x设置为父元素,继续进行判定
                        rotateLeft(x);//进行左旋操作
                    }
                    setColor(parentOf(x), BLACK);//父节点设置为黑色
                    setColor(parentOf(parentOf(x)), RED);//父元素的父元素设置为红色
                    rotateRight(parentOf(parentOf(x)));//进行右旋操作
                }
            } else {//父元素为其父的右节点
                Entry<K,V> y = leftOf(parentOf(parentOf(x)));//取左节点(叔节点)
                if (colorOf(y) == RED) {//颜色为红
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));//x设置为父元素的父元素,继续进行判定
                } else {//叔节点不可能为黑色,故下面为无叔节点情况,必然需要进行旋转
                    if (x == leftOf(parentOf(x))) {//如果当前元素为其父的左节点
                        x = parentOf(x);//x设置为父元素,继续进行判定
                        rotateRight(x);//进行右旋操作
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateLeft(parentOf(parentOf(x)));//进行左旋操作
                }
            }
        }
        root.color = BLACK;//根节点设置为黑色
    }

 

插入节点必定是末端节点,插入节点总是红色的(保证不会破坏性质5)

情况1 黑父

插入节点后可维持红黑树性质

情况2 红父

插入节点后不能维持红黑树性质4,故可能需要进行着色或旋转操作

该情况下,红父肯定没有孩子(红父只可能有两个黑孩子)

下面假设父亲为左节点进行分析(右节点的情况类似,只是旋转方向相反)

情况2.1 红父、红叔

根据红黑树的性质5可推得,红叔肯定没有孩子

插入新节点只破坏了颜色的性质,故进行重新着色再按祖向上继续判断即可


情况2.2 红父、黑叔

由于红父没有孩子,根据红黑树的性质5可推得,该情况的黑叔实际只可能为空的NIL节点

插入新节点不仅破坏了颜色的性质,还破坏了平衡,故需要进行重新着色和旋转

此时新节点的左右位置影响具体的旋转方式

情况2.2.1 红父、无叔、插入左节点

重新着色并按祖右旋

情况2.2.2 红父、无叔、插入右节点

按父左旋,并指向父继续判断(即接着按情况2.2.1处理)



红黑树的查询

由于红黑树为有序的二叉查找树,故可以按照二叉查找树的查找方法进行查找操作;算法时间复杂度约为O(log2N)

1、按照key值查找

   public V get(Object key) {//根据key值查找value
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }
   final Entry<K,V> getEntry(Object key) {//根据key值查找元素方法;final方法不允许被子类重写
        // Offload comparator-based version for sake of performance
        if (comparator != null)//存在比较器,按比较器进行比较查找
            return getEntryUsingComparator(key);
        if (key == null)//key值为null抛空指针异常
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {//从root开始循环查找,一直到叶子节点
            int cmp = k.compareTo(p.key);//采用key的compareTo方法进行比较
            if (cmp < 0)//小于继续查找左边
                p = p.left;
            else if (cmp > 0)//大于继续查找右边
                p = p.right;
            else
                return p;//等于返回当前元素
        }
        return null;
    }
   final Entry<K,V> getEntryUsingComparator(Object key) {//比较器查找元素方法
     K k = (K) key;
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = cpr.compare(k, p.key);//采用比较器进行比较
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
        }
        return null;
    }

2、遍历方法:正序遍历

    final Entry<K,V> getFirstEntry() {//取首元素
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)//循环查找最左端元素
                p = p.left;
        return p;
    }
   final Entry<K,V> nextEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = successor(e);
            lastReturned = e;
            return e;
        }

   static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {//查找下一个元素
        if (t == null)
            return null;//空元素返回null
        else if (t.right != null) {//先查找右边
            Entry<K,V> p = t.right;
            while (p.left != null)//循环查找该子树的最左元素
                p = p.left;
            return p;
        } else {//右边为空
            Entry<K,V> p = t.parent;//父元素
            Entry<K,V> ch = t;//当前元素
            while (p != null && ch == p.right) {//循环查找父节点(到顶层节点或当前元素为父亲的左节点时停下)
                ch = p;
                p = p.parent;
            }
            return p;//返回父元素
        }
    }

3、遍历方法:倒序遍历

    final Entry<K,V> getLastEntry() {//取末元素
        Entry<K,V> p = root;
        if (p != null)
            while (p.right != null)//循环查找最右端元素
                p = p.right;
        return p;
    }
    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {//查找上一个元素
        if (t == null)
            return null;//空元素返回null
        else if (t.left != null) {//先查找左边
            Entry<K,V> p = t.left;
            while (p.right != null)//循环查找该子树的最右元素
                p = p.right;
            return p;
        } else {//右边为空
            Entry<K,V> p = t.parent;//父元素
            Entry<K,V> ch = t;//当前元素
            while (p != null && ch == p.left) {//循环查找父节点(到顶层节点或当前元素为父亲的右节点时停下)
                ch = p;
                p = p.parent;
            }
            return p;//返回父元素
        }
    }

 

红黑树的删除

由于红黑树为有序的二叉查找树,它的删除也与二叉查找树类似,先找到真正删除点,再进行实际的替换及删除;算法时间复杂度约为O(log2N)

    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);//先找到需要删除的元素
        if (p == null)
            return null;

        V oldValue = p.value;
        deleteEntry(p);
        return oldValue;
    }

    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;

        // If strictly internal, copy successor's element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {//如果有两个孩子
            Entry<K,V> s = successor (p);//查找下一元素
            p.key = s.key;
            p.value = s.value;//p的数据替换为该元素数据
            p = s;//将p指向该元素,作为原始元素(被删除元素)
        } // p has 2 children

        // Start fixup at replacement node, if it exists.
        Entry<K,V> replacement = (p.left != null ? p.left : p.right);//将替换元素设置为左元素(没有则为右元素)

        if (replacement != null) {//替换元素不为空
            // Link replacement to parent
            replacement.parent = p.parent;//将替换元素与原始元素的父亲连接起来
            if (p.parent == null)
                root = replacement;
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            else
                p.parent.right = replacement;

            // Null out links so they are OK to use by fixAfterDeletion.
            p.left = p.right = p.parent = null;//原始元素连接清空

            // Fix replacement
            if (p.color == BLACK)//删除元素为黑色,需要进行删除后树形变化操作
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node.
            root = null;//根节点的删除
        } else { //  No children. Use self as phantom replacement and unlink.
            if (p.color == BLACK)
                fixAfterDeletion(p);
            //没有孩子时,使用自己作为替换节点,先树形变化再进行连接清空操作
            if (p.parent != null) {
                if (p == p.parent.left)
                    p.parent.left = null;
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }

    private void fixAfterDeletion(Entry<K,V> x) {//删除数据后的树形变化处理
        while (x != root && colorOf(x) == BLACK) {//当前节点为黑(替换元素不可能为黑,只有删除自身的情况)
            if (x == leftOf(parentOf(x))) {//左节点
                Entry<K,V> sib = rightOf(parentOf(x));//取父亲的右节点(兄节点)

                if (colorOf(sib) == RED) {//颜色为红
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);//着色
                    rotateLeft(parentOf(x));//按父左旋
                    sib = rightOf(parentOf(x));//指向左旋后的父亲的右节点(为黑)
                }
                //颜色为黑
                if (colorOf(leftOf(sib))  == BLACK &&
                    colorOf(rightOf(sib)) == BLACK) {//两个孩子均为黑(实际只可能为无孩子情况)
                    setColor(sib, RED);//着色
                    x = parentOf(x);//x指向父节点继续判断
                } else {
                    if (colorOf(rightOf(sib)) == BLACK) {//右节点为黑(实际只可能为无右孩子)
                        setColor(leftOf(sib), BLACK);
                        setColor(sib, RED);//着色
                        rotateRight(sib);//按兄右旋
                        sib = rightOf(parentOf(x));//指向右旋后的父亲的右节点
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(rightOf(sib), BLACK);//着色
                    rotateLeft(parentOf(x));//按父左旋
                    x = root;//结束循环
                }
            } else { // symmetric//右节点
                Entry<K,V> sib = leftOf(parentOf(x));//取父亲的左节点(兄节点)

                if (colorOf(sib) == RED) {//颜色为红
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);//着色
                    rotateRight(parentOf(x));//按父右旋
                    sib = leftOf(parentOf(x));//指向右旋后的父亲的左节点(为黑或空)
                }
                //颜色为黑
                if (colorOf(rightOf(sib)) == BLACK &&
                    colorOf(leftOf(sib)) == BLACK) {//两个孩子均为黑
                    setColor(sib, RED);//着色
                    x = parentOf(x);//x指向父节点继续判断
                } else {
                    if (colorOf(leftOf(sib)) == BLACK) {//左节点为黑
                        setColor(rightOf(sib), BLACK);
                        setColor(sib, RED);//着色
                        rotateLeft(sib);//按兄左旋
                        sib = leftOf(parentOf(x));//指向左旋后的父亲的左节点
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(leftOf(sib), BLACK);//着色
                    rotateRight(parentOf(x));//按父右旋
                    x = root;//结束循环
                }
            }
        }

        setColor(x, BLACK);//将x置为黑色
    }


真正删除的节点并不一定是传入节点,当其有两个孩子时,会查找下一个节点作为真正的删除点

由遍历方法可知,该节点一定是没有孩子或只有一个孩子

再按红黑树的性质推断:

1、该节点如果为红色,必然为叶子节点

2、该节点如果为黑色,只可能有一个红色孩子或无孩子

那么删除该节点就有下面的几种情况

情况1 该节点为红

删除无孩子的红色不破坏红黑树性质,直接删除即可

情况2 该节点为黑色,并且有一个红色孩子

将红色孩子放置到该节点位置,并着色为黑,即满足了红黑树性质

情况3 该节点为黑色,并且没有孩子

下面假设删除节点为左节点进行分析(右节点的情况类似,只是旋转方向相反)

情况3.1 黑色 红兄

此情况红兄必然有两个孩子,删除后同时影响平衡及颜色性质,故需要重新着色及旋转操作

图片中侄下面的情况未标注,可能有零至数个红色孩子

情况3.2 黑色 黑兄

此情况删除后也同时影响平衡及颜色性质,故需要重新着色及旋转操作

情况3.2.1 黑色 黑兄-无孩子

该情况重新着色即可

情况3.2.2 黑色 黑兄-左孩子

该情况需要重新着色及旋转

情况3.2.3 黑色 黑兄-右孩子

该情况需要重新着色及旋转

 

其他要点

1、作为一个可排序的结构,提供了可传入的比较器以及直接使用Object.compareTo两种模式进行选择

2、与其他的集合类相同,均提供了拷贝构造器

3、提供了正序、倒序的keySet;提供了KeyIterator、DescendingKeyIterator;EntryIterator;ValueIterator

阅读更多
个人分类: Java集合
上一篇Java集合之LinkedList源码解析
下一篇Java集合之HashMap源码解析
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭