利用二分法求方程3x^3-13x+2=0在区间[1,9]的根。
【分析】
1.相关概念
零点:函数y=f(x)的零点就是f(x)=0的根,如果y=f(x)有根存在,则说明函数y=f(x)的图像与x轴有交点。
2.零点存在的判断方法
函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则y=f(x)在(a,b)内有零点存在,如图所示。
3.二分法定义
对于区间[a,b]上连续且f(a)·f(b)<0的函数y=f(x),通过不断地将函数f(x)的零点所在区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法。
具体的做法为:
(1)当f(a)·f(b)<0,则说明区间[a,b]上存在零点,求出中间值c=(a+b)/2,判断f(a)·f(c)正负。
(2)如果f(a)·f(c)<0,说明区间[a,c]上存在零点,令b=c;否则说明区间[c,b]上存在零点,令a=c。
(3)如果|f(c)|>EPS(精度)且|a-b|>EPS,则转步骤(1),执行;否则停止执行,将c作为近似值。
【示例】
利用二分法求函数f(x)=3x^3-13x+2在区间[1,4]的零点。
计算过程如下:
(1)令a=1,b=4,计算a、b中间值c=2.5。
(2)因为f(1)=-8,f(2.5)=16.375,所以f(1)·f(2.5)<0。因此零点位于区间[1,2.5],令b=2.5。
(3)求出a、b中间值c=1.75。
(4)因为f(1)=-8,f(1.75)=-4.67188,所以f(1)·f(1.75)>0。因此零点位于区间[1.75,2.5],令a=1.75。
(5)不断重复上述过程直到 |f(c)| < EPS时,停止执行,将c作为近似值。
code:
#include<stdio.h>
#include<math.h>
#include <iostream>
#define EPS 1e-6
double f(double x);
void main()
{
double a, b, c=0;
printf("请输入一个区间(如:1,4):");
scanf("%lf,%lf", &a, &b);
printf("方程3*x*x*x-13*x+2=0的解:x=");
if (fabs(f(a)) <= EPS)
{
printf("%lg\n", a);
}
else if (fabs(f(b)) <= EPS)
{
printf("%lg\n", b);
}
else if (f(a)*f(b) > 0)
{
printf("f(%lg)*f(%lg)>0请重新输入,使f(%lg)*f(%lg)<=0 !\n", a, b);
}
else
{
while (fabs(f(c)) > EPS&&fabs(b - a) > EPS)
{
c = (a + b) / 2.0;
if (f(a)*f(c) < 0)
b = c;
else
a = c;
}
printf("%lg\n", c);
}
system("pause");
}
double f(double x)
{
return 3 * x*x*x - 13 * x + 2;
}
结果: