迭代算法6——近似迭代法之二分法

利用二分法求方程3x^3-13x+2=0在区间[1,9]的根。

【分析】
1.相关概念

零点:函数y=f(x)的零点就是f(x)=0的根,如果y=f(x)有根存在,则说明函数y=f(x)的图像与x轴有交点。

2.零点存在的判断方法

函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则y=f(x)在(a,b)内有零点存在,如图所示。


3.二分法定义

对于区间[a,b]上连续且f(a)·f(b)<0的函数y=f(x),通过不断地将函数f(x)的零点所在区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法。

具体的做法为:
(1)当f(a)·f(b)<0,则说明区间[a,b]上存在零点,求出中间值c=(a+b)/2,判断f(a)·f(c)正负。
(2)如果f(a)·f(c)<0,说明区间[a,c]上存在零点,令b=c;否则说明区间[c,b]上存在零点,令a=c。
(3)如果|f(c)|>EPS(精度)且|a-b|>EPS,则转步骤(1),执行;否则停止执行,将c作为近似值。

【示例】
利用二分法求函数f(x)=3x^3-13x+2在区间[1,4]的零点。
计算过程如下:
(1)令a=1,b=4,计算a、b中间值c=2.5。
(2)因为f(1)=-8,f(2.5)=16.375,所以f(1)·f(2.5)<0。因此零点位于区间[1,2.5],令b=2.5。
(3)求出a、b中间值c=1.75。
(4)因为f(1)=-8,f(1.75)=-4.67188,所以f(1)·f(1.75)>0。因此零点位于区间[1.75,2.5],令a=1.75。
(5)不断重复上述过程直到 |f(c)| < EPS时,停止执行,将c作为近似值。

code:

#include<stdio.h>
#include<math.h>
#include <iostream>
#define EPS 1e-6
double f(double x);
void main()
{
	double a, b, c=0;
	printf("请输入一个区间(如:1,4):");
	scanf("%lf,%lf", &a, &b);
	printf("方程3*x*x*x-13*x+2=0的解:x=");
	if (fabs(f(a)) <= EPS)
	{
		printf("%lg\n", a);
	}
	else if (fabs(f(b)) <= EPS)
	{
		printf("%lg\n", b);
	}
	else if (f(a)*f(b) > 0)
	{
		printf("f(%lg)*f(%lg)>0请重新输入,使f(%lg)*f(%lg)<=0 !\n", a, b);
	}
	else
	{
		while (fabs(f(c)) > EPS&&fabs(b - a) > EPS)
		{
			c = (a + b) / 2.0;
			if (f(a)*f(c) < 0)
				b = c;
			else
				a = c;
		}
		printf("%lg\n", c);
	}
	system("pause");
}
double f(double x)
{
	return 3 * x*x*x - 13 * x + 2;
}

结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值