图片人脸检测——OpenCV版(二)

多张脸识别效果图: 

技术实现思路

图片转换成灰色(去除色彩干扰,让图片识别更准确)

图片上画矩形

使用训练分类器查找人脸

具体实现代码

图片转换成灰色

使用OpenCV的cvtColor()转换图片颜色,代码如下:

1

2

3

4

5

6

7

8

9

10

import cv2

 

filepath = "img/xingye-1.jpg"

img = cv2.imread(filepath)

# 转换灰色

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 显示图像

cv2.imshow("Image", gray)

cv2.waitKey(0)

cv2.destroyAllWindows()

图片上画矩形

使用OpenCV的rectangle()绘制矩形,代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

import cv2

 

filepath = "img/xingye-1.jpg"

img = cv2.imread(filepath)  # 读取图片

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换灰色

x = y = 10  # 坐标

w = 100  # 矩形大小(宽、高)

color = (0, 0, 255# 定义绘制颜色

cv2.rectangle(img, (x, y), (x + w, y + w), color, 1# 绘制矩形

cv2.imshow("Image", img)  # 显示图像

cv2.waitKey(0)

cv2.destroyAllWindows()  # 释放所有的窗体资源

使用训练分类器查找人脸

在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 可全部下载到本地,本人存放的路径是:C:\Python36\Lib\site-packages\opencv-master\data\haarcascades.

完整实现代码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import cv2

 

filepath = "img/xingye-1.jpg"

img = cv2.imread(filepath)  # 读取图片

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换灰色

 

# OpenCV人脸识别分类器

classifier = cv2.CascadeClassifier(

    "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"

)

color = (0, 255, 0# 定义绘制颜色

# 调用识别人脸

faceRects = classifier.detectMultiScale(

    gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))

if len(faceRects):  # 大于0则检测到人脸

    for faceRect in faceRects:  # 单独框出每一张人脸

        x, y, w, h = faceRect

        # 框出人脸

        cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)

        # 左眼

        cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),

                   color)

        #右眼

        cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),

                   color)

        #嘴巴

        cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),

                      (x + 5 * w // 8, y + 7 * h // 8), color)

 

cv2.imshow("image", img)  # 显示图像

c = cv2.waitKey(10)

 

cv2.waitKey(0)

cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值