UyHiP 往期趣题整理(3)2016 / 05~08

2016-05

(这个题比较怪异……谨慎阅读)

我们想把平均值的概念推广到一般的度量空间 S 上。关于度量空间的定义和性质这里列不下,请自行搜索。

请务必注意:S 上没有定义任何算术运算,也未必存在一个对应某个通常意义下实数的元素。

S 上定义了一个 S→S 的对合函数 y=x',所谓对合,指该函数必须满足条件 x''=x(S 中任意元素经过两次映射回到自身)。显然 S 是一一映射。我们把这个函数称为 S 上的“倒数”(与通常意义下的倒数对应)。

S 上定义了算术平均:“与点 a, b 距离相等且最小的唯一一点,称为 a, b 的算术平均,记为 AM(a, b) ”(当然如果这样的点没有或者不唯一,算术平均就不存在),以及调和平均:“HM(a, b) = (AM(a',b'))' 称为 a, b 的调和平均”。

现在要求用上述定义(以及度量空间自身的定义)写出几何平均的定义,要求与正实数集或者右半复平面上的通常意义下的几何平均对应。

2016-06

(这题难点在于在计算器上用最少次数按出结果表达式……感觉很无聊就省略了。求表达式的过程极容易)

3n 根木桩排成 n*3 的矩阵,边长为 3 的两端分别为起点和终点。青蛙从起点一侧的 3 根木桩中任选一根作起点,每一步必须跳到下一行的 3 根木桩之一,可以直跳也可以斜跳,但不能隔一列走日字跳。跳到终点一侧的 3 根木桩之一结束。问总共有多少种跳法?

2016-07

终于有一道有趣的了,题目背景是经典的囚犯戴帽子问题。

n 个犯人玩游戏,事先众人可以商量一个策略,然后所有人闭眼,此时典狱官在每个人头上戴上无穷顶帽子(每人头上的帽子都是一个无穷序列,下标从 1 开始遍历所有正整数;别问我为什么帽子摞起来不会倒,也别问我犯人的脖子是什么材料做的),帽子有黑白两种颜色。所有人睁眼后可以看到其他所有人的帽子,但看不到自己的帽子,也不能互相交流。之后每个人在纸条上写一个正整数(用于指代自己头上的某顶帽子)交给典狱官。典狱官公布结果后,如果所有人指的都是白帽子,则所有人都可以释放。

已知每顶帽子是黑是白的概率各为 50% 且相互独立,显然没有 100% 成功的策略,现在囚犯想让释放的概率尽可能大。

(1)请问是否存在释放概率(在渐近意义上)不低于 1/(log(n)) 的策略?若有则描述该策略,否则证明不存在。

(2)对 n=2 的情况给出一个释放概率的上界。(当然越小越好,平凡上界如 1 就算了)

2016-08

聚会上有 n 个人,其中有些人相互认识。显然相识关系可以用 n 个顶点的无向简单图表示,两顶点连边表示这两个人认识。

已知:任意两个人都恰有 k 个共同认识的人(这两个人自己不算)。

(1)若 k=1,请给出无穷多个满足条件的图。

(2)若 k=2,请给出至少两个满足条件的图。




答案

2016-05

一种方法是如下定义两个序列:

A_0=a, B_0=b

A_(n+1)=AM(A_n, B_n), B_(n+1)=HM(A_n, B_n)

如果序列 A_n, B_n 有相同的极限,就将其定义为 a, b 的几何平均。

另一种方法是定义 a, b 的几何平均为满足 AM(HM(a, x), HM(x, b)) = x 的唯一一点 x 。

2016-06

列线性递推式计算,或者写矩阵乘法都行。结果是 ( (1+sqrt(2))^(n+1) + (1-sqrt(2))^(n+1) ) / 2 。

2016-07

(1)此题有经典策略。囚犯事先选定一个正整数 k,之后去猜“自己前 k 顶帽子中白帽子的最小序号”(先假设每个人的前 k 顶帽子都有白帽子)。具体猜法如下:观察别人的最小白帽子序号,然后从 1~k 中选一个整数,使其与其他所有人的最小白帽子序号相加是 k 的倍数(显然有且只有一个数满足条件)。可以看到只要每个人的前 k 顶帽子都有白帽子,且所有囚犯的最小白帽子序号之和是 k 的倍数,那么每个人都能猜中自己的最小白帽子序号,从而所有人都将释放。

“每个人的前 k 顶帽子都有白帽子”的概率是 (1-1/2^k)^n(其余情况虽然囚犯也可以瞎猜,但是我们不管了,反正只需要估一个下界);“所有囚犯的最小白帽子序号之和是 k 的倍数”的概率看起来不好算,因为最小白帽子序号等于 1~k 的概率并不相等。但是注意到将“k 的倍数”改为“除以 k 余 t”,上面的策略依然成立。令 t 取遍 0~k-1,总有一个 t 使得“所有囚犯的最小白帽子序号之和除以 k 余 t”的概率不小于 1/k 。囚犯只要事先算出一个这样的 t 约定好就行。这样成功概率就不小于

(1-1/2^k)^n / k

取 k=log(n)(以 2 为底),此值趋近于 1/(e*log(n)),满足要求。

(2)警告:以下证明并不严谨,严谨的证明需要一些深入的概率论知识,没办法在这里细讲。

为了方便,后面用每个囚犯头上所有白帽子序号组成的集合表示囚犯头上的帽子序列,它必然是正整数集 {1, 2, 3, ... } 的子集。

n=2 时囚犯 1, 2 的帽子分别用集合 A, B 表示,记为 (A, B) 。囚犯事先商量的策略可以用两个函数 p1(B) 和 p2(A) 表示,前者是囚犯 1 看到囚犯 2 头上的帽子后选择的序号,后者相反。

对任意的 (A, B),考虑以下 8 种情况:

( A, B )

( A, B ⊕ {p2(A)} )

( A, B ⊕ {p2(A')} )

( A, B ⊕ {p2(A), p2(A')} )

( A', B )

( A', B ⊕ {p2(A)} )

( A', B ⊕ {p2(A')} )

( A', B ⊕ {p2(A), p2(A')} )

其中 A' 表示 A 的补集,⊕ 表示对称差。如果 p2(A) 不等于 p2(A'),容易看出 8 种情况中最多有 3 种可以成功(例如如果 B 不包含 p2(A) 和 p2(A'),那么第 2, 4, 7, 8 种情况中 B 可以猜对;但是第 7, 8 种情况 A 不可能都猜对),成功率为 0.375 。

如果 p2(A) 等于 p2(A'),则 8 种情况两两相同,简化成 4 种情况:

( A, B )

( A, B ⊕ {p2(A)} )

( A', B )

( A', B ⊕ {p2(A)} )

4 种情况 B 猜的总是 p2(A),故只能猜对情况 1, 3 或 2, 4,不管怎样,这两种情况中 A 只能猜对其中一种,成功率为 0.25 。

综上可得成功率不会超过 0.375 。

2016-08

(1)符合要求的图的顶点数可以是任意奇数:将若干个三角形各自拿出一个顶点捏合起来就行。

下面证明顶点数一定是奇数。设顶点数为 n 。

对任意顶点 u,考虑其所有邻点组成的集合 N(u),N(u) 中任取一点都与 u 恰有一个公共邻点(即恰有一个属于 N(u) 的邻点),因此 N(u) 的所有点一定是两两连接配对,此外没有多余的边。这说明任意顶点的度数一定是偶数。

固定一顶点 a,任取异于 a 的顶点 x,x 与 a 恰有一个公共邻点(即 x 恰有一个属于 N(a) 的邻点),我们把连接 x 与这个公共邻点的边做上标记。取遍所有 x,一共做了 n-1 个标记;另一方面,N(a) 与除 a, N(a) 之外顶点的连边被计算了一次,而 N(a) 内部的连边计算了两次。现在再加上 N(a) 与 a 的连边,这样一共算了 |N(a)|+n-1 条边,同时注意到这个数值正好就是 N(a) 中所有顶点的度数之和,所以一定是偶数。|N(a)| 本身是 a 的度数,也是偶数,从而 n 一定是奇数。

(2)以下不考虑单个顶点的图,这样满足条件的图至少有 4 个顶点。

首先注意到对每个顶点 a,可以建立一个从“除 a 外所有顶点”到“任选 a 的两个不同邻点组成无序对的集合”的双射 f:令 f(x) = {u, v},其中 u, v 是 x 与 a 的两个公共邻点。注意对 a 的任意两个不同邻点 u, v,它们有两个公共邻点,其中一个是 a,另一个记作 x,容易看出 x 是唯一一个满足 f(x) = {u, v} 的顶点,因此这确实是双射。由此立即得到该图的顶点总数为 1+d*(d-1)/2,其中 d 是 a 的度数;进而得到图中所有顶点有相同的度数 d(d>=2)。

记 A 为该图的邻接矩阵,则向量 (1, ... , 1)' 显然是 A 的特征向量,特征值为 d 。对于 d-正规图(所有顶点度数均为 d 的图)已有结论:

a) 邻接矩阵的特征值均落在区间 [-d, d] 内;

b) d 一定是特征值,重数就是该图连通分量的个数;

c) -d 是特征值的充要条件是该图至少有一个连通分量是二分图。

这里的图显然是连通图(因为任两顶点都有公共邻点),并且不是二分图(任取两个相邻的点,它们有公共邻点,三个顶点便构成一个三角形),因此特征值 d 的重数就是 1,其余特征值均落在区间 (-d, d) 内。

考虑 A^2,注意到 A^2[i][j] 等于 i, j 公共邻点的个数,当 i=j 时有 d 个邻点,当 i≠j 时有两个邻点,因此 A^2 是一个对角线上全为 d,其余位置全为 2 的矩阵,即 A^2 = (d-2)*I + 2*U(U 为全部填满 1 的矩阵)。

任取 A 的一个具有特征值 λ(不等于 d)的特征向量 v,有 Av=λv,从而 A^2*v=λ^2*v,由于 v 与 (1, ... , 1)' 正交(因为 A 是对称矩阵,其不同特征值的特征向量正交),可得 Uv 必为零向量。这样就有 A^2*v=(d-2)*I*v=(d-2)v,即 m^2=d-2 。

显然 m 等于 ±sqrt(d-2),故 A 的特征值只有 d(一重), t 和 -t(其中 t=sqrt(d-2))。

再利用 A 的所有特征值之和等于 A 的迹(即为 0),设 t 和 -t 的重数分别为 a 和 b,则有 (a-b)*t+d=0,立即可推出 t=d/(b-a) 为有理数;另外还可得到 t 一定整除 d=t^2+2,从而整除 2,即 t 等于 1 或 2,相应地 d 等于 3 或 6,图的顶点总数为 4 或 16 。

满足要求的 4 顶图显然任两顶点都有连边,即为 K_4 。通过暴力搜索可以得到两个满足要求的 16 顶图,一个是Shrikhande graph,一个是Rook's graph

两图都可以由 4*4 棋盘构造出来:将棋盘上任意一格与它的正下方一格、正右方一格、右下方斜向一格分别连接(第四行的格子向下走将走到第一行,第四列的各自向右走将走到第一列),就得到左图。将棋盘上同行或者同列的两格连接,就得到右图。注意左图任一顶点的 6 个邻点连成一个六边形,而右图任一顶点的 6 个邻点连成两个三角形。

关于 d-正规图结论的证明

参考这篇论文。本来没想写,但是证明非常简单精巧,忍不住就来补充了。

重新叙述一遍定理:设 G 是 d-正规图(所有顶点度数均为 d 的无向图),A 是其邻接矩阵,则有

a) A 的特征值均落在区间 [-d, d] 内;

b) 特征值 d 的重数就是该图连通分量的个数;

c) -d 是特征值的充要条件是该图至少有一个连通分量是二分图。

证明它需要用到一个叫瑞利商(Rayleigh quotient)的东西。设 M 是实对称矩阵,则 M 的瑞利商定义为

我们知道实对称矩阵一定可以正交对角化,即存在正交矩阵 Q 以及对角矩阵 Λ=diag(λ_1, ... , λ_n) 使得 M=Q'ΛQ,这样瑞利商实际上就是

显然当 x 取遍去零点的全空间时,y 也取遍去零点全空间。这样很容易看出来瑞利商何时取最值:设 λ 是最小的特征值,则瑞利商的最小值就是 λ,并且当且仅当 y 只在 Λ 对角线上等于 λ 的位置取非零值时(也就是 Λy=λy,这等价于 Mx=λx),瑞利商取到最小值。换句话说使得瑞利商取最小值的全体 x 构成 M 对于特征值 λ 的特征子空间(挖去零点),维数就是 λ 的重数。

最大值也是一样的。

怎么用瑞利商解决问题呢?先对邻接矩阵 A 试用一下:


其中 V 是顶点集 {1, 2, ... , n},E 是边集,每条无向边用两端点的有序对表示。注意每条无向边只计算一次,但是邻接矩阵里正向反向有两个 1,所以分子要乘以 2 。

但是这个式子看起来不怎么好用,现在利用正规图的条件,将它配方!(为了方便,省略了 sigma 的下标)

先看第二个式子,显然最大值是 d,即 A 的特征值不会大于 d;取等条件是分子各平方项均为零,即各边端点对应的 x 分量均相等。这意味着图的各连通分量内部所有值全相等,连通分量之间没有限制,显然有几个连通分量,满足条件的 x 组成的子空间就有几维。当然因为连通分量至少也有一个,因此 d 肯定是特征值,而重数就是连通分量个数。

而第一个式子说明 A 的特征值不会小于 -d,取等条件是分子各平方项均为零,即各边端点对应的 x 分量互为相反数。考察图的各个连通分量,如果不是二分图,则容易得出所有值必须为 0;如果是二分图,则将 X, Y 两部分别赋值 1, -1 即可,而且再没有其他的取值(除非只差一个实数倍),因为连通图只要确定一点的取值,其他点的取值都能唯一确定。所以 -d 是不是特征值要看连通分量中有没有二分图,如果有,那 -d 的重数就是连通分量中二分图的个数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值