递推方程的几种解法

一、常系数线性齐次递推方程

1. 定义

{ H ( n ) − a 1 ( n − 1 ) − a 2 H ( n − 2 ) − . . . − a k H ( n − k ) = 0 H ( 0 ) = b 0 H ( 1 ) = b 1 H ( 2 ) = b 2 . . . H ( k − 1 ) = b k − 1 \left\{ \begin{aligned} &H(n)-a_1(n-1)-a_2H(n-2)-...-a_kH(n-k)=0 \\ &H(0)=b_0 \\ &H(1)=b_1 \\ &H(2)=b_2 \\ &... \\ &H(k-1)=b_{k-1} \end{aligned} \right. H(n)a1(n1)a2H(n2)...akH(nk)=0H(0)=b0H(1)=b1H(2)=b2...H(k1)=bk1

这是关于 H ( n ) H(n) H(n)的递推方程,其中: n ≥ k , a k ≠ 0 n \geq k,a_k \neq 0 nk,ak=0

2. 特征方程

递推方程的特征方程为
x k − a 1 x k − 1 − . . . − a k − 1 x − a k = 0 x^k-a_1x^{k-1}-...-a_{k-1}x-a_k=0 xka1xk1...ak1xak=0

特征方程的根为递推方程的特征根

3. 递推方程的通解

q 1 , q 2 , . . . , q k q_1,q_2,...,q_k q1,q2,...,qk是递推方程不等的特征根,则 c 1 q 1 n + c 2 q 2 n + . . . + c k q k n c_1q_1^n+c_2q_2^n+...+c_kq_k^n c1q1n+c2q2n+...+ckqkn是该递推方程的通解,其中 c 1 , c 2 , . . . , c k c_1,c_2,...,c_k c1,c2,...,ck是任意常数。

q q q是递推方程的 i i i重特征根,则 ( c 1 + c 2 n + . . . + c k n i − 1 ) q n (c_1+c_2n+...+c_kn^{i-1})q^n (c1+c2n+...+ckni1)qn是该递推方程的通解,其中 c 1 , c 2 , . . . , c k c_1,c_2,...,c_k c1,c2,...,ck是任意常数。

将初始条件代入通解中,即可解得 c 1 , c 2 , . . . , c k c_1,c_2,...,c_k c1,c2,...,ck,求出该递推方程的特解。

4. 例题

【例 1】求解递推方程
{ H ( n ) = H ( n − 1 ) + H ( n − 2 ) H ( 0 ) = 1 H ( 1 ) = 1 \left\{ \begin{aligned} &H(n)=H(n-1)+H(n-2) \\ &H(0)=1 \\ &H(1)=1 \\ \end{aligned} \right. H(n)=H(n1)+H(n2)H(0)=1H(1)=1
【解】特征方程为 x 2 − x − 1 = 0 x^2-x-1=0 x2x1=0,解得特征根为 x 1 = 1 + 5 2 , x 2 = 1 − 5 2 x_1=\frac{1+\sqrt{5}}{2},x_2=\frac{1-\sqrt{5}}{2} x1=21+5 ,x2=215 ,得到递推方程的通解
H ( n ) = c 1 ( 1 + 5 2 ) n + c 2 ( 1 − 5 2 ) n H(n)=c_1\left(\frac{1+\sqrt{5}}{2}\right)^n+c_2\left(\frac{1-\sqrt{5}}{2}\right)^n H(n)=c1(21+5 )n+c2(215 )n
代入初值 H ( 0 ) = 1 , H ( 1 ) = 1 H(0)=1,H(1)=1 H(0)=1,H(1)=1得到方程组
{ H ( 0 ) = c 1 + c 2 = 1 H ( 1 ) = c 1 ( 1 + 5 2 ) + c 2 ( 1 − 5 2 ) = 1 \left\{ \begin{aligned} &H(0)=c_1+c_2=1 \\ &H(1)=c_1\left( \frac{1+\sqrt{5}}{2} \right)+c_2\left( \frac{1-\sqrt{5}}{2} \right)=1 \end{aligned} \right. H(0)=c1+c2=1H(1)=c1(21+5 )+c2(215 )=1
解得
{ c 1 = ∣ 1 1 1 1 − 5 2 ∣ ∣ 1 1 1 + 5 2 1 − 5 2 ∣ = 1 5 1 + 5 2 c 2 = ∣ 1 1 1 + 5 2 1 ∣ ∣ 1 1 1 + 5 2 1 − 5 2 ∣ = − 1 5 1 − 5 2 \left\{ \begin{aligned} &c_1=\frac{\begin{vmatrix} 1 & 1 \\ 1 & \frac{1-\sqrt{5}}{2} \end{vmatrix}} {\begin{vmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{vmatrix}} = \frac{1}{\sqrt{5}} \frac{1+\sqrt{5}}{2}\\ &c_2=\frac{\begin{vmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & 1 \end{vmatrix}} {\begin{vmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{vmatrix}} = -\frac{1}{\sqrt{5}} \frac{1-\sqrt{5}}{2}\\ \end{aligned} \right. c1= 121+5 1215 111215 =5 121+5 c2= 121+5 1215 121+5 11 =5 1215
所以递推方程的通解为
H ( n ) = 1 5 ( 1 + 5 2 ) n + 1 − 1 5 ( 1 − 5 2 ) n + 1 H(n)=\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} H(n)=5 1(21+5 )n+15 1(215 )n+1

【例 2】求解递推方程
{ H ( n ) − 3 H ( n − 1 ) + 4 H ( n − 3 ) = 0 H ( 0 ) = 1 H ( 1 ) = 0 H ( 2 ) = 0 \left\{ \begin{aligned} &H(n)-3H(n-1)+4H(n-3)=0 \\ &H(0)=1 \\ &H(1)=0 \\ &H(2)=0 \end{aligned} \right. H(n)3H(n1)+4H(n3)=0H(0)=1H(1)=0H(2)=0
【解】特征方程为 x 3 − 3 x 2 + 4 = 0 x^3-3x^2+4=0 x33x2+4=0,解得特征根为 x 1 = − 1 , x 2 = x 3 = 2 x_1=-1,x_2=x_3=2 x1=1,x2=x3=2,得到递推方程的通解
H ( n ) = ( c 1 + c 2 n ) ⋅ 2 n + c 3 ⋅ ( − 1 ) n H(n)=(c_1+c_2n)\cdot2^n+c_3\cdot(-1)^n H(n)=(c1+c2n)2n+c3(1)n
代入初值 H ( 0 ) = 1 , H ( 1 ) = 0 , H ( 2 ) = 0 H(0)=1,H(1)=0,H(2)=0 H(0)=1,H(1)=0,H(2)=0得到方程组
{ H ( 0 ) = c 1 + c 3 = 1 H ( 1 ) = 2 ( c 1 + c 2 ) − c 3 = 2 c 1 + 2 c 2 − c 3 = 0 H ( 2 ) = 4 ( c 1 + 2 c 2 ) + c 3 = 4 c 1 + 8 c 2 + c 3 = 0 \left\{ \begin{aligned} &H(0)=c_1+c_3=1 \\ &H(1)=2(c_1+c_2)-c_3=2c_1+2c_2-c_3=0 \\ &H(2)=4(c_1+2c_2)+c_3=4c_1+8c_2+c_3=0 \end{aligned} \right. H(0)=c1+c3=1H(1)=2(c1+c2)c3=2c1+2c2c3=0H(2)=4(c1+2c2)+c3=4c1+8c2+c3=0
解得
{ c 1 = ∣ 1 0 1 0 2 − 1 0 8 1 ∣ ∣ 1 0 1 2 2 − 1 4 8 1 ∣ = 5 9 c 2 = ∣ 1 1 1 2 0 − 1 4 0 1 ∣ ∣ 1 0 1 2 2 − 1 4 8 1 ∣ = − 1 3 c 3 = ∣ 1 0 1 2 2 0 4 8 0 ∣ ∣ 1 0 1 2 2 − 1 4 8 1 ∣ = 4 9 \left\{ \begin{aligned} &c_1= \frac{\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 8 & 1 \end{vmatrix}} {\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & -1 \\ 4 & 8 & 1\end{vmatrix}} = \frac{5}{9}\\ &c_2= \frac{\begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 4 & 0 & 1 \end{vmatrix}} {\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & -1 \\ 4 & 8 & 1\end{vmatrix}} = -\frac{1}{3}\\ &c_3= \frac{\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 4 & 8 & 0 \end{vmatrix}} {\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & -1 \\ 4 & 8 & 1\end{vmatrix}} = \frac{4}{9} \end{aligned} \right. c1= 124028111 100028111 =95c2= 124028111 124100111 =31c3= 124028111 124028100 =94
所以递推方程的通解为
H ( n ) = ( 5 9 − 1 3 n ) 2 n + 4 9 ( − 1 ) n H(n)=\left(\frac{5}{9}-\frac{1}{3}n\right)2^n+\frac{4}{9}(-1)^n H(n)=(9531n)2n+94(1)n

二、常系数线性非齐次递推方程

1. 定义

{ H ( n ) − a 1 ( n − 1 ) − a 2 H ( n − 2 ) − . . . − a k H ( n − k ) = f ( n ) H ( 0 ) = b 0 H ( 1 ) = b 1 H ( 2 ) = b 2 . . . H ( k − 1 ) = b k − 1 \left\{ \begin{aligned} &H(n)-a_1(n-1)-a_2H(n-2)-...-a_kH(n-k)=f(n) \\ &H(0)=b_0 \\ &H(1)=b_1 \\ &H(2)=b_2 \\ &... \\ &H(k-1)=b_{k-1} \end{aligned} \right. H(n)a1(n1)a2H(n2)...akH(nk)=f(n)H(0)=b0H(1)=b1H(2)=b2...H(k1)=bk1

这是关于 H ( n ) H(n) H(n)的递推方程,其中: n ≥ k , a k ≠ 0 , f ( n ) ≠ 0 n \geq k,a_k \neq 0,f(n) \neq 0 nk,ak=0,f(n)=0

2. 特征方程

递推方程的特征方程为
x k − a 1 x k − 1 − . . . − a k − 1 x − a k = 0 x^k-a_1x^{k-1}-...-a_{k-1}x-a_k=0 xka1xk1...ak1xak=0

特征方程的根为递推方程的特征根

3. 递推方程的通解

H 0 ( n ) H_0(n) H0(n)是对应齐次方程的通解, H ∗ ( n ) H^*(n) H(n)是一个非齐次方程的特解,则该非齐次方程的通解为
H ( n ) = H 0 ( n ) + H ∗ ( n ) H(n)=H_0(n)+H^*(n) H(n)=H0(n)+H(n)

4. 确定非齐次方程的特解

f ( n ) f(n) f(n)特解 H ∗ ( n ) H^*(n) H(n)的形式
a a a 1 1 1不是特征根) A A A
a a a 1 1 1是特征根) n A nA nA
a n + b an+b an+b 1 1 1不是特征根) A n + B An+B An+B
a n + b an+b an+b 1 1 1是特征根) n ( A n + B ) n(An+B) n(An+B)
a n 2 + b n + c an^2+bn+c an2+bn+c 1 1 1不是特征根) A n 2 + B n + C An^2+Bn+C An2+Bn+C
a n 2 + b n + c an^2+bn+c an2+bn+c 1 1 1是特征根) n ( A n 2 + B n + C ) n(An^2+Bn+C) n(An2+Bn+C)
a β n a\beta^n aβn β \beta β不是特征根) A β n A\beta^n Aβn
a β n a\beta^n aβn β \beta β i i i重特征根) A n i β n An^i\beta^n Aniβn
( a n + b ) β n (an+b)\beta^n (an+b)βn β \beta β不是特征根) ( A n + B ) β n (An+B)\beta^n (An+B)βn
( a n + b ) β n (an+b)\beta^n (an+b)βn β \beta β i i i重特征根) ( A n + B ) n i β n (An+B)n^i\beta^n (An+B)niβn

5. 例题

【例 1】求解递推方程
{ H ( n ) = H ( n − 1 ) + n − 1 H ( 1 ) = 0 \left\{ \begin{aligned} &H(n)=H(n-1)+n-1 \\ &H(1)=0 \end{aligned} \right. {H(n)=H(n1)+n1H(1)=0
【解】特征方程为 x 2 − x = 0 x^2-x=0 x2x=0,解得特征根为 x 1 = 1 , x 2 = 0 x_1=1,x_2=0 x1=1,x2=0,得到对应齐次方程的通解
H 0 ( n ) = c 1 ⋅ 1 n + c 2 ⋅ 0 n = c 1 H_0(n)=c_1 \cdot 1^n+c_2 \cdot 0^n=c_1 H0(n)=c11n+c20n=c1
由于特征根中有 1 1 1,故设特解为
H ∗ ( n ) = n ( A n + B ) = A n 2 + B n H^*(n)=n(An+B)=An^2+Bn H(n)=n(An+B)=An2+Bn
代入递推方程得
( A n 2 + B n ) − [ A ( n − 1 ) 2 + B ( n − 1 ) ] = 2 A n − A + B = n − 1 (An^2+Bn)-[A(n-1)^2+B(n-1)]=2An-A+B=n-1 (An2+Bn)[A(n1)2+B(n1)]=2AnA+B=n1
对比等号两边系数,得 A = 1 2 , B = − 1 2 A=\frac{1}{2},B=-\frac{1}{2} A=21,B=21,所以递推方程的通解为
H ( n ) = H 0 ( n ) + H ∗ ( n ) = c 1 + 1 2 n 2 − 1 2 n H(n)=H_0(n)+H^*(n)=c_1+\frac{1}{2}n^2-\frac{1}{2}n H(n)=H0(n)+H(n)=c1+21n221n
代入初值条件 H ( 1 ) = 0 H(1)=0 H(1)=0,得 c 1 = 0 c_1=0 c1=0,最终得到
H ( n ) = 1 2 n 2 − 1 2 n H(n)=\frac{1}{2}n^2-\frac{1}{2}n H(n)=21n221n

【例 2】求解递推方程
{ H ( n ) = 2 H ( n − 1 ) + 1 H ( 1 ) = 1 \left\{ \begin{aligned} &H(n)=2H(n-1)+1 \\ &H(1)=1 \end{aligned} \right. {H(n)=2H(n1)+1H(1)=1
【解】特征方程为 x 2 − 2 x = 0 x^2-2x=0 x22x=0,解得特征根为 x 1 = 2 , x 2 = 0 x_1=2,x_2=0 x1=2,x2=0,得到对应齐次方程的通解
H 0 ( n ) = c 1 ⋅ 2 n + c 2 ⋅ 0 n = c 1 ⋅ 2 n H_0(n)=c_1 \cdot 2^n+c_2 \cdot 0^n=c_1 \cdot 2^n H0(n)=c12n+c20n=c12n
设特解为 H ∗ ( n ) = A H^*(n)=A H(n)=A,代入递推方程得 A = 2 A + 1 A=2A+1 A=2A+1,解得 A = − 1 A=-1 A=1,所以递推方程的通解为
H ( n ) = H 0 ( n ) + H ∗ ( n ) = c 1 ⋅ 2 n − 1 H(n)=H_0(n)+H^*(n)=c_1 \cdot 2^n-1 H(n)=H0(n)+H(n)=c12n1
代入初值条件 H ( 1 ) = 1 H(1)=1 H(1)=1,得 c 1 = 1 c_1=1 c1=1,最终得到
H ( n ) = 2 n − 1 H(n)=2^n-1 H(n)=2n1

【例 3】求解递推方程
{ H ( n ) − 4 H ( n − 1 ) + 4 H ( n − 2 ) = 2 n H ( 0 ) = 1 H ( 1 ) = 5 \left\{ \begin{aligned} &H(n)-4H(n-1)+4H(n-2)=2^n \\ &H(0)=1 \\ &H(1)=5 \end{aligned} \right. H(n)4H(n1)+4H(n2)=2nH(0)=1H(1)=5
【解】特征方程为 x 2 − 4 x + 4 = 0 x^2-4x+4=0 x24x+4=0,解得特征根为 x 1 = x 2 = 2 x_1=x_2=2 x1=x2=2,得到对应齐次方程的通解
H 0 ( n ) = ( c 1 + c 2 n ) ⋅ 2 n H_0(n)=(c_1+c_2n) \cdot 2^n H0(n)=(c1+c2n)2n
由于 2 2 2为二重特征根,故设特解为
H ∗ ( n ) = n 2 A ⋅ 2 n H^*(n)=n^2A \cdot 2^n H(n)=n2A2n
代入递推方程得
n 2 A ⋅ 2 n − 4 ( n − 1 ) 2 A ⋅ 2 n − 1 + 4 ( n − 2 ) 2 A ⋅ 2 n − 2 = 2 n n^2A \cdot 2^n-4(n-1)^2A \cdot 2^{n-1}+4(n-2)^2A \cdot 2^{n-2}=2^n n2A2n4(n1)2A2n1+4(n2)2A2n2=2n
解得 A = 1 2 A=\frac{1}{2} A=21,所以递推方程的通解为
H ( n ) = H 0 ( n ) + H ∗ ( n ) = ( c 1 + c 2 n ) ⋅ 2 n + n 2 ⋅ 2 n − 1 H(n)=H_0(n)+H^*(n)=(c_1+c_2n) \cdot 2^n+n^2 \cdot 2^{n-1} H(n)=H0(n)+H(n)=(c1+c2n)2n+n22n1
代入初值条件得
{ H ( 0 ) = c 1 = 1 H ( 1 ) = 2 ( c 1 + c 2 ) + 1 = 5 \left\{ \begin{aligned} &H(0)= c_1 = 1\\ &H(1)= 2(c_1+c_2)+1=5 \end{aligned} \right. {H(0)=c1=1H(1)=2(c1+c2)+1=5
解得 c 1 = 1 , c 2 = 1 c_1=1,c_2=1 c1=1,c2=1,最终得到
H ( n ) = ( 1 + n ) ⋅ 2 n + n 2 ⋅ 2 n − 1 H(n)=(1+n) \cdot 2^n+n^2 \cdot 2^{n-1} H(n)=(1+n)2n+n22n1

三、其他解法

以上方法只适用于常系数线性递推方程,对于变系数递推方程和特征根为虚数的情况,还可以使用以下方法求解。

1. 数学归纳法(用于证明)

当待证结论为一阶形式时,使用第一数学归纳法
{ ( 1 ) 验证 n = 1 时,命题 H ( n ) 正确 ( 2 ) 假设 n = k ( k ≥ 2 ) 时,命题 H ( n ) 正确 ( 3 ) 证明 n = k + 1 时,命题 H ( n ) 正确 \left\{ \begin{aligned} (1)&验证n=1时,命题H(n)正确\\ (2)&假设n=k(k \geq 2)时,命题H(n)正确\\ (3)&证明n=k+1时,命题H(n)正确 \end{aligned} \right. 123验证n=1时,命题H(n)正确假设n=k(k2)时,命题H(n)正确证明n=k+1时,命题H(n)正确
当待证结论为二阶形式时,使用第二数学归纳法
{ ( 1 ) 验证 n = 1 和 n = 2 时,命题 H ( n ) 均正确 ( 2 ) 假设 n < k ( k ≥ 3 ) 时,命题 H ( n ) 正确 ( 3 ) 证明 n = k 时,命题 H ( n ) 正确 \left\{ \begin{aligned} (1)&验证n=1和n=2时,命题H(n)均正确\\ (2)&假设n<k(k \geq 3)时,命题H(n)正确\\ (3)&证明n=k时,命题H(n)正确 \end{aligned} \right. 123验证n=1n=2时,命题H(n)均正确假设n<k(k3)时,命题H(n)正确证明n=k时,命题H(n)正确

2. 迭代归纳法

【例 1】求解递推方程
{ H ( n ) − n H ( n − 1 ) = n ! H ( 0 ) = 2 \left\{ \begin{aligned} &H(n)-nH(n-1)=n! \\ &H(0)=2 \end{aligned} \right. {H(n)nH(n1)=n!H(0)=2
【解】由迭代法得
H ( n ) = n ! + n H ( n − 1 ) = n ! + n [ ( n − 1 ) ! + ( n − 1 ) H ( n − 2 ) ] = n ! + n ( n − 1 ) ! + n ( n − 1 ) H ( n − 2 ) = 2 n ! + n ( n − 1 ) H ( n − 2 ) = 2 n ! + n ( n − 1 ) [ ( n − 2 ) ! + ( n − 2 ) H ( n − 3 ) ] = 3 n ! + n ( n − 1 ) ( n − 2 ) H ( n − 3 ) = . . . = n ⋅ n ! + n ! ⋅ H ( 0 ) = n ⋅ n ! + n ! ⋅ 2 = ( n + 2 ) ⋅ n ! \begin{aligned} H(n) &= n!+nH(n-1) \\ &=n!+n[(n-1)!+(n-1)H(n-2)] \\ &=n!+n(n-1)!+n(n-1)H(n-2) \\ &=2n!+n(n-1)H(n-2) \\ &=2n!+n(n-1)[(n-2)!+(n-2)H(n-3)] \\ &=3n!+n(n-1)(n-2)H(n-3) \\ &=...\\ &=n \cdot n!+n! \cdot H(0) \\ &=n \cdot n!+n! \cdot 2 \\ &=(n+2) \cdot n! \end{aligned} H(n)=n!+nH(n1)=n!+n[(n1)!+(n1)H(n2)]=n!+n(n1)!+n(n1)H(n2)=2n!+n(n1)H(n2)=2n!+n(n1)[(n2)!+(n2)H(n3)]=3n!+n(n1)(n2)H(n3)=...=nn!+n!H(0)=nn!+n!2=(n+2)n!
为确保结果的正确性,使用数学归纳法进行验证:

(1)当 n = 0 n=0 n=0时, H ( 0 ) = ( 0 + 2 ) ⋅ 0 ! = 2 H(0)=(0+2) \cdot 0!=2 H(0)=(0+2)0!=2,说明命题 H ( n ) H(n) H(n)正确;

(2)假设 n = k ( k ≥ 1 ) n=k(k \geq 1) n=k(k1)时,命题 H ( n ) H(n) H(n)正确;

(3)当 n = k + 1 n=k+1 n=k+1时,
H ( k + 1 ) = ( k + 1 ) ! + ( k + 1 ) H ( k ) = ( k + 1 ) [ k ! + H ( k ) ] = ( k + 1 ) [ k ! + ( k + 2 ) ⋅ k ! ] = ( k + 1 ) [ 1 + ( k + 2 ) ] k ! = [ ( k + 1 ) + 2 ) ] ( k + 1 ) ! \begin{aligned} H(k+1)&=(k+1)!+(k+1)H(k) \\ &=(k+1)[k!+H(k)] \\ &=(k+1)[k!+(k+2) \cdot k!] \\ &=(k+1)[1+(k+2)] k!\\ &=[(k+1)+2)] (k+1)! \end{aligned} H(k+1)=(k+1)!+(k+1)H(k)=(k+1)[k!+H(k)]=(k+1)[k!+(k+2)k!]=(k+1)[1+(k+2)]k!=[(k+1)+2)](k+1)!
说明结果正确。

【例 2】求解递推方程
{ ( n − 1 ) H ( n ) − n H ( n − 1 ) = 0 H ( 1 ) = 1 \left\{ \begin{aligned} &(n-1)H(n)-nH(n-1)=0 \\ &H(1)=1 \end{aligned} \right. {(n1)H(n)nH(n1)=0H(1)=1
【解】由迭代法得
H ( n ) = n n − 1 H ( n − 1 ) = n n − 1 n − 1 n − 2 H ( n − 2 ) = n n − 1 n − 1 n − 2 n − 2 n − 3 H ( n − 3 ) = . . . = n n − 1 n − 1 n − 2 n − 2 n − 3 ⋅ ⋅ ⋅ 2 1 H ( 1 ) = n ! ( n − 1 ) ! H ( 1 ) = n ⋅ H ( 1 ) = n \begin{aligned} H(n)&=\frac{n}{n-1}H(n-1) \\ &=\frac{n}{n-1}\frac{n-1}{n-2}H(n-2) \\ &=\frac{n}{n-1}\frac{n-1}{n-2}\frac{n-2}{n-3}H(n-3) \\ &=...\\ &=\frac{n}{n-1}\frac{n-1}{n-2}\frac{n-2}{n-3}···\frac{2}{1}H(1) \\ &=\frac{n!}{(n-1)!}H(1) \\ &=n \cdot H(1) \\ &=n \end{aligned} H(n)=n1nH(n1)=n1nn2n1H(n2)=n1nn2n1n3n2H(n3)=...=n1nn2n1n3n2⋅⋅⋅12H(1)=(n1)!n!H(1)=nH(1)=n
由数学归纳法验证可知结果正确。

【例 3】求解递推方程
{ ( n − 1 ) H ( n ) − n H ( n − 1 ) = 1 H ( 1 ) = 1 \left\{ \begin{aligned} &(n-1)H(n)-nH(n-1)=1 \\ &H(1)=1 \end{aligned} \right. {(n1)H(n)nH(n1)=1H(1)=1

【解】这是一个非齐次变系数递推方程,先解对应的齐次方程 ( n − 1 ) H ( n ) − n H ( n − 1 ) = 0 (n-1)H(n)-nH(n-1)=0 (n1)H(n)nH(n1)=0,由迭代法解得 H ( n ) = n ⋅ H ( 1 ) H(n)=n \cdot H(1) H(n)=nH(1),即 H ( n ) n = H ( 1 ) \frac{H(n)}{n}=H(1) nH(n)=H(1)。现将原非齐次方程凑成 H ( n ) n \frac{H(n)}{n} nH(n)的形式,等式两边同除 n ( n − 1 ) n(n-1) n(n1)可得
H ( n ) n − H ( n − 1 ) n − 1 = 1 n ( n − 1 ) \frac{H(n)}{n}-\frac{H(n-1)}{n-1}=\frac{1}{n(n-1)} nH(n)n1H(n1)=n(n1)1
T ( n ) = H ( n ) n T(n)=\frac{H(n)}{n} T(n)=nH(n),得到一个新的递推方程
{ T ( n ) − T ( n − 1 ) = 1 n ( n − 1 ) T ( 1 ) = 1 \left\{ \begin{aligned} &T(n)-T(n-1)=\frac{1}{n(n-1)} \\ &T(1)=1 \end{aligned} \right. T(n)T(n1)=n(n1)1T(1)=1
所以有
T ( n ) = [ T ( n ) − T ( n − 1 ) ] + [ T ( n − 1 ) − T ( n − 2 ) ] + . . . + [ T ( 2 ) − T ( 1 ) ] + T ( 1 ) = ∑ k = 2 n [ T ( k ) − T ( k − 1 ) ] + T ( 1 ) = 1 + ∑ k = 2 n 1 k ( k − 1 ) = 1 + ( 1 − 1 2 + 1 2 − 1 3 + . . . − 1 n − 1 + 1 n − 1 − 1 n ) = 2 − 1 n \begin{aligned} T(n)&=[T(n)-T(n-1)]+[T(n-1)-T(n-2)]+...+[T(2)-T(1)]+T(1) \\ &=\sum_{k=2}^n[T(k)-T(k-1)]+T(1) \\ &=1+\sum_{k=2}^n\frac{1}{k(k-1)} \\ &=1+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}) \\ &=2-\frac{1}{n} \end{aligned} T(n)=[T(n)T(n1)]+[T(n1)T(n2)]+...+[T(2)T(1)]+T(1)=k=2n[T(k)T(k1)]+T(1)=1+k=2nk(k1)1=1+(121+2131+...n11+n11n1)=2n1
即: H ( n ) = 2 n − 1 H(n)=2n-1 H(n)=2n1

【例 4】求解递推方程
{ ( n + 2 ) H ( n ) − ( n − 1 ) H ( n − 1 ) = 1 H ( 1 ) = 1 \left\{ \begin{aligned} &(n+2)H(n)-(n-1)H(n-1)=1 \\ &H(1)=1 \end{aligned} \right. {(n+2)H(n)(n1)H(n1)=1H(1)=1
【解】这是一个非齐次变系数递推方程,先解对应的齐次方程 ( n + 2 ) H ( n ) − ( n − 1 ) H ( n − 1 ) = 0 (n+2)H(n)-(n-1)H(n-1)=0 (n+2)H(n)(n1)H(n1)=0,由迭代法得
H ( n ) = n − 1 n + 2 H ( n − 1 ) = n − 1 n + 2 n − 2 n + 1 H ( n − 2 ) = n − 1 n + 2 n − 2 n + 1 n − 3 n H ( n − 3 ) = . . . = n − 1 n + 2 n − 2 n + 1 n − 3 n ⋅ ⋅ ⋅ 1 4 H ( 1 ) = ( n − 1 ) ! ( n + 2 ) ! 6 H ( 1 ) = 6 ( n − 1 ) ! ( n + 2 ) ! H ( 1 ) = 6 n ( n + 1 ) ( n + 2 ) H ( 1 ) \begin{aligned} H(n)&=\frac{n-1}{n+2}H(n-1) \\ &=\frac{n-1}{n+2}\frac{n-2}{n+1}H(n-2) \\ &=\frac{n-1}{n+2}\frac{n-2}{n+1}\frac{n-3}{n}H(n-3) \\ &=...\\ &=\frac{n-1}{n+2}\frac{n-2}{n+1}\frac{n-3}{n}···\frac{1}{4}H(1) \\ &=\frac{(n-1)!}{\frac{(n+2)!}{6}}H(1) \\ &=6\frac{(n-1)!}{(n+2)!}H(1) \\ &=\frac{6}{n(n+1)(n+2)}H(1) \end{aligned} H(n)=n+2n1H(n1)=n+2n1n+1n2H(n2)=n+2n1n+1n2nn3H(n3)=...=n+2n1n+1n2nn3⋅⋅⋅41H(1)=6(n+2)!(n1)!H(1)=6(n+2)!(n1)!H(1)=n(n+1)(n+2)6H(1)
n ( n + 1 ) ( n + 2 ) H ( n ) = 6 H ( 1 ) n(n+1)(n+2)H(n)=6H(1) n(n+1)(n+2)H(n)=6H(1),现将原非齐次方程凑成 n ( n + 1 ) ( n + 2 ) H ( n ) n(n+1)(n+2)H(n) n(n+1)(n+2)H(n)的形式,等式两边同乘 n ( n + 1 ) n(n+1) n(n+1)可得
n ( n + 1 ) ( n + 2 ) H ( n ) − ( n − 1 ) n ( n + 1 ) H ( n − 1 ) = n ( n + 1 ) n(n+1)(n+2)H(n)-(n-1)n(n+1)H(n-1)=n(n+1) n(n+1)(n+2)H(n)(n1)n(n+1)H(n1)=n(n+1)
T ( n ) = n ( n + 1 ) ( n + 2 ) H ( n ) T(n)=n(n+1)(n+2)H(n) T(n)=n(n+1)(n+2)H(n),得到一个新的递推方程
{ T ( n ) − T ( n − 1 ) = n ( n + 1 ) T ( 1 ) = 6 \left\{ \begin{aligned} &T(n)-T(n-1)=n(n+1) \\ &T(1)=6 \end{aligned} \right. {T(n)T(n1)=n(n+1)T(1)=6
所以有
T ( n ) = ∑ k = 2 n [ T ( k ) − T ( k − 1 ) ] + T ( 1 ) = 6 + ∑ k = 2 n k ( k + 1 ) \begin{aligned} T(n)&=\sum_{k=2}^n[T(k)-T(k-1)]+T(1) \\ &=6+\sum_{k=2}^n k(k+1) \\ \end{aligned} T(n)=k=2n[T(k)T(k1)]+T(1)=6+k=2nk(k+1)

H ( n ) = 1 n ( n + 1 ) ( n + 2 ) [ 6 + ∑ k = 2 n k ( k + 1 ) ] H(n)=\frac{1}{n(n+1)(n+2)}[6+\sum_{k=2}^n k(k+1)] H(n)=n(n+1)(n+2)1[6+k=2nk(k+1)]

【例 5】求解递推方程
{ n H ( n ) − H ( n − 1 ) = 1 H ( 1 ) = 1 \left\{ \begin{aligned} &nH(n)-H(n-1)=1 \\ &H(1)=1 \end{aligned} \right. {nH(n)H(n1)=1H(1)=1
【解】这是一个非齐次变系数递推方程,先解对应的齐次方程 n H ( n ) − H ( n − 1 ) = 0 nH(n)-H(n-1)=0 nH(n)H(n1)=0,由迭代法得
H ( n ) = 1 n H ( n − 1 ) = 1 n 1 n − 1 H ( n − 2 ) = 1 n 1 n − 1 1 n − 2 H ( n − 3 ) = . . . = 1 n ! H ( 1 ) \begin{aligned} H(n)&=\frac{1}{n}H(n-1) \\ &=\frac{1}{n}\frac{1}{n-1}H(n-2) \\ &=\frac{1}{n}\frac{1}{n-1}\frac{1}{n-2}H(n-3) \\ &=...\\ &=\frac{1}{n!}H(1) \end{aligned} H(n)=n1H(n1)=n1n11H(n2)=n1n11n21H(n3)=...=n!1H(1)
n ! H ( n ) = H ( 1 ) n!H(n)=H(1) n!H(n)=H(1),现将原非齐次方程凑成 n ! H ( n ) n!H(n) n!H(n)的形式,等式两边同乘 ( n − 1 ) ! (n-1)! (n1)!可得
n ! H ( n ) − ( n − 1 ) ! H ( n − 1 ) = ( n − 1 ) ! n!H(n)-(n-1)!H(n-1)=(n-1)! n!H(n)(n1)!H(n1)=(n1)!
T ( n ) = n ! H ( n ) T(n)=n!H(n) T(n)=n!H(n),得到一个新的递推方程
{ T ( n ) − T ( n − 1 ) = ( n − 1 ) ! T ( 1 ) = 1 \left\{ \begin{aligned} &T(n)-T(n-1)=(n-1)! \\ &T(1)=1 \end{aligned} \right. {T(n)T(n1)=(n1)!T(1)=1
所以有
T ( n ) = ∑ k = 2 n [ T ( k ) − T ( k − 1 ) ] + T ( 1 ) = 1 + ∑ k = 2 n ( k − 1 ) ! \begin{aligned} T(n)&=\sum_{k=2}^n[T(k)-T(k-1)]+T(1) \\ &=1+\sum_{k=2}^n (k-1)! \\ \end{aligned} T(n)=k=2n[T(k)T(k1)]+T(1)=1+k=2n(k1)!

H ( n ) = 1 n ! + 1 ! n ! + 2 ! n ! + . . . + ( n − 1 ) ! n ! H(n)=\frac{1}{n!}+\frac{1!}{n!}+\frac{2!}{n!}+...+\frac{(n-1)!}{n!} H(n)=n!1+n!1!+n!2!+...+n!(n1)!

【例 6】设 n n n阶矩阵 A A A B B B,已知 A B = c B ( c 为常数) AB=cB(c为常数) AB=cBc为常数),求证: A n B = c n B A^nB=c^nB AnB=cnB

【证】使用迭代法:

A n B = A n − 1 ⋅ A B = A n − 1 ⋅ c B = c ⋅ A n − 1 B = c A n − 2 ⋅ A B = c A n − 2 ⋅ c B = c 2 ⋅ A n − 2 B = . . . = c n − 1 ⋅ A B = c n − 1 ⋅ c B = c n B \begin{aligned} A^nB &= A^{n-1} \cdot AB = A^{n-1} \cdot cB = c \cdot A^{n-1}B \\ &= cA^{n-2} \cdot AB = cA^{n-2} \cdot cB = c^2 \cdot A^{n-2}B \\ &=...\\ &= c^{n-1} \cdot AB = c^{n-1} \cdot cB\\ &= c^nB \end{aligned} AnB=An1AB=An1cB=cAn1B=cAn2AB=cAn2cB=c2An2B=...=cn1AB=cn1cB=cnB

3. 差消法

有些高阶递推方程,需要先使用差消法将其转化为一阶递推方程再求解更方便。

【例 1】求解递推方程
{ H ( n ) = ( n − 1 ) [ H ( n − 1 ) + H ( n − 2 ) ] H ( 1 ) = 0 H ( 2 ) = 1 \left\{ \begin{aligned} &H(n)=(n-1)[H(n-1)+H(n-2)] \\ &H(1)=0 \\ &H(2)=1 \end{aligned} \right. H(n)=(n1)[H(n1)+H(n2)]H(1)=0H(2)=1
【解】由于直接迭代该二阶递推方程比较繁琐,因此使用差消法得
H ( n ) − n H ( n − 1 ) = − [ H ( n − 1 ) − ( n − 1 ) H ( n − 2 ) ] = ( − 1 ) 2 ⋅ [ H ( n − 2 ) − ( n − 2 ) H ( n − 3 ) ] = ( − 1 ) 3 ⋅ [ H ( n − 3 ) − ( n − 3 ) H ( n − 4 ) ] = . . . = ( − 1 ) n − 2 ⋅ [ H ( 2 ) − 2 H ( 1 ) ] = ( − 1 ) n − 2 = ( − 1 ) n \begin{aligned} H(n)-nH(n-1)&=-[H(n-1)-(n-1)H(n-2)] \\ &=(-1)^2 \cdot [H(n-2)-(n-2)H(n-3)]\\ &=(-1)^3 \cdot [H(n-3)-(n-3)H(n-4)]\\ &=...\\ &=(-1)^{n-2} \cdot [H(2)-2H(1)]\\ &=(-1)^{n-2}\\ &=(-1)^n \end{aligned} H(n)nH(n1)=[H(n1)(n1)H(n2)]=(1)2[H(n2)(n2)H(n3)]=(1)3[H(n3)(n3)H(n4)]=...=(1)n2[H(2)2H(1)]=(1)n2=(1)n
此时二阶递推方程转化为一阶递推方程为
{ H ( n ) − n H ( n − 1 ) = ( − 1 ) n H ( 1 ) = 0 \left\{ \begin{aligned} &H(n)-nH(n-1)=(-1)^n \\ &H(1)=0 \end{aligned} \right. {H(n)nH(n1)=(1)nH(1)=0
这是一个变系数的递推方程,使用迭代法得
H ( n ) = n H ( n − 1 ) + ( − 1 ) n = n [ ( n − 1 ) H ( n − 2 ) + ( − 1 ) n − 1 ] + ( − 1 ) n = n ( n − 1 ) H ( n − 2 ) + n ( − 1 ) n − 1 + ( − 1 ) n = n ( n − 1 ) [ ( n − 2 ) H ( n − 3 ) + ( − 1 ) n − 2 ] + n ( − 1 ) n − 1 + ( − 1 ) n = n ( n − 1 ) ( n − 2 ) H ( n − 3 ) + n ( n − 1 ) ( − 1 ) n − 2 + n ( − 1 ) n − 1 + ( − 1 ) n = n ( n − 1 ) ( n − 2 ) ( n − 3 ) H ( n − 4 ) + n ( n − 1 ) ( n − 2 ) ( − 1 ) n − 3 + n ( n − 1 ) ( − 1 ) n − 2 + n ( − 1 ) n − 1 + ( − 1 ) n = . . . = [ n ( n − 1 ) ⋅ ⋅ ⋅ 2 ] ⋅ H ( 1 ) + [ n ( n − 1 ) ⋅ ⋅ ⋅ 3 ] ⋅ ( − 1 ) 2 + [ n ( n − 1 ) ⋅ ⋅ ⋅ 4 ] ⋅ ( − 1 ) 3 + . . . + n ( − 1 ) n − 1 + ( − 1 ) n = [ n ( n − 1 ) ⋅ ⋅ ⋅ 3 ] ⋅ ( − 1 ) 2 + [ n ( n − 1 ) ⋅ ⋅ ⋅ 4 ] ⋅ ( − 1 ) 3 + . . . + n ( − 1 ) n − 1 + ( − 1 ) n \begin{aligned} H(n)&=nH(n-1)+(-1)^n \\ &=n[(n-1)H(n-2)+(-1)^{n-1}]+(-1)^n \\ &=n(n-1)H(n-2)+n(-1)^{n-1}+(-1)^n \\ &=n(n-1)[(n-2)H(n-3)+(-1)^{n-2}]+n(-1)^{n-1}+(-1)^n \\ &=n(n-1)(n-2)H(n-3)+n(n-1)(-1)^{n-2}+n(-1)^{n-1}+(-1)^n \\ &=n(n-1)(n-2)(n-3)H(n-4)+n(n-1)(n-2)(-1)^{n-3}+n(n-1)(-1)^{n-2}+n(-1)^{n-1}+(-1)^n \\ &=...\\ &=[n(n-1)···2] \cdot H(1)+[n(n-1)···3] \cdot (-1)^{2}+[n(n-1)···4] \cdot (-1)^{3}+...+n(-1)^{n-1}+(-1)^n \\ &=[n(n-1)···3] \cdot (-1)^{2}+[n(n-1)···4] \cdot (-1)^{3}+...+n(-1)^{n-1}+(-1)^n \\ \end{aligned} H(n)=nH(n1)+(1)n=n[(n1)H(n2)+(1)n1]+(1)n=n(n1)H(n2)+n(1)n1+(1)n=n(n1)[(n2)H(n3)+(1)n2]+n(1)n1+(1)n=n(n1)(n2)H(n3)+n(n1)(1)n2+n(1)n1+(1)n=n(n1)(n2)(n3)H(n4)+n(n1)(n2)(1)n3+n(n1)(1)n2+n(1)n1+(1)n=...=[n(n1)⋅⋅⋅2]H(1)+[n(n1)⋅⋅⋅3](1)2+[n(n1)⋅⋅⋅4](1)3+...+n(1)n1+(1)n=[n(n1)⋅⋅⋅3](1)2+[n(n1)⋅⋅⋅4](1)3+...+n(1)n1+(1)n

4. 一些技巧

【例 1】求解递推方程
{ H ( n ) = ( 1 − a ) H ( n − 1 ) + a H ( n − 2 ) H ( 1 ) = 1 − a H ( 2 ) = 1 − a + a 2 ( a ≠ 1 ) \left\{ \begin{aligned} &H(n)=(1-a)H(n-1)+aH(n-2) \\ &H(1)=1-a \\ &H(2)=1-a+a^2 \end{aligned} \right. (a \neq 1) H(n)=(1a)H(n1)+aH(n2)H(1)=1aH(2)=1a+a2(a=1)
【解】该题可以使用公式法求解,其特征方程为 ( q − 1 ) ( q − a ) = 0 (q-1)(q-a)=0 (q1)(qa)=0。现在使用另一种方法来解决。原方程可变形为
H ( n ) − H ( n − 1 ) = − a [ H ( n − 1 ) − H ( n − 2 ) ] \begin{aligned} H(n)-H(n-1)=-a[H(n-1)-H(n-2)] \end{aligned} H(n)H(n1)=a[H(n1)H(n2)]
T ( n ) = H ( n ) − H ( n − 1 ) ( n ≥ 2 ) T(n)=H(n)-H(n-1)(n \geq 2) T(n)=H(n)H(n1)(n2),则得到一个新的递推方程
{ T ( n ) = − a T ( n − 1 ) T ( 2 ) = a 2 ( a ≠ 1 , n ≥ 3 ) \left\{ \begin{aligned} &T(n)=-aT(n-1) \\ &T(2)=a^2 \end{aligned} \right. (a \neq 1,n \geq 3) {T(n)=aT(n1)T(2)=a2(a=1,n3)
注意到 T ( n ) T(n) T(n)是一个公比为 − a -a a的等比数列,所以通项公式为 T ( n ) = T ( 2 ) ( − a ) n − 2 ( n ≥ 3 ) T(n)=T(2)(-a)^{n-2}(n \geq 3) T(n)=T(2)(a)n2(n3),即
T ( n ) = H ( n ) − H ( n − 1 ) = a 2 ⋅ ( − a ) n − 2 = ( − a ) 2 ⋅ ( − a ) n − 2 = ( − a ) n T(n)=H(n)-H(n-1)=a^2 \cdot (-a)^{n-2}=(-a)^2 \cdot (-a)^{n-2}=(-a)^n T(n)=H(n)H(n1)=a2(a)n2=(a)2(a)n2=(a)n
所以有
H ( n ) = ∑ k = 2 n [ H ( k ) − H ( k − 1 ) ] + H ( 1 ) = 1 − a + ∑ k = 2 n [ ( − a ) k ] = 1 − a + a 2 − a 3 + . . . + ( − a ) n \begin{aligned} H(n)&=\sum_{k=2}^n[H(k)-H(k-1)]+H(1) \\ &=1-a+\sum_{k=2}^n[(-a)^k] \\ &=1-a+a^2-a^3+...+(-a)^n \end{aligned} H(n)=k=2n[H(k)H(k1)]+H(1)=1a+k=2n[(a)k]=1a+a2a3+...+(a)n

【例 2】求解递推方程
{ H ( n ) = H ( n − 1 ) − H ( n − 2 ) H ( 1 ) = 1 H ( 2 ) = 0 \left\{ \begin{aligned} &H(n)=H(n-1)-H(n-2) \\ &H(1)=1 \\ &H(2)=0 \end{aligned} \right. H(n)=H(n1)H(n2)H(1)=1H(2)=0
【解】由于特征方程为虚数根(也同时说明解可能具有周期性),所以难以使用公式求解。原方程可变形为
H ( n ) = H ( n − 1 ) − H ( n − 2 ) = [ H ( n − 2 ) − H ( n − 3 ) ] − H ( n − 2 ) = − H ( n − 3 ) \begin{aligned} H(n)&=H(n-1)-H(n-2) \\ &=[H(n-2)-H(n-3)]-H(n-2) \\ &=-H(n-3) \end{aligned} H(n)=H(n1)H(n2)=[H(n2)H(n3)]H(n2)=H(n3)
所以递推方程变为
{ H ( n ) = − H ( n − 3 ) H ( 1 ) = 1 H ( 2 ) = 0 H ( 3 ) = − 1 \left\{ \begin{aligned} &H(n)=-H(n-3) \\ &H(1)=1 \\ &H(2)=0 \\ &H(3)=-1 \end{aligned} \right. H(n)=H(n3)H(1)=1H(2)=0H(3)=1
显然,这是一个分为三段的周期数列,即
{ H ( 1 ) = 1 , H ( 4 ) = − 1 , H ( 7 ) = 1 , . . . H ( 2 ) = 0 , H ( 5 ) = 0 , H ( 8 ) = 0 , . . . H ( 3 ) = − 1 , H ( 6 ) = 1 , H ( 9 ) = − 1 , . . . \left\{ \begin{aligned} &H(1)=1,&&H(4)=-1,&&H(7)=1,... \\ &H(2)=0,&&H(5)=0,&&H(8)=0,...\\ &H(3)=-1,&&H(6)=1,&&H(9)=-1,...\\ \end{aligned} \right. H(1)=1,H(2)=0,H(3)=1,H(4)=1,H(5)=0,H(6)=1,H(7)=1,...H(8)=0,...H(9)=1,...
写成表达式为
H ( n ) = { ( − 1 ) k + 1 , n = 3 k − 2 0 , n = 3 k − 1 ( − 1 ) k , n = 3 k ( k ≥ 1 ) H(n)= \begin{cases} (-1)^{k+1},&n=3k-2 \\ 0,&n=3k-1 \\ (-1)^k,&n=3k \\ \end{cases} (k \geq 1) H(n)= (1)k+1,0,(1)k,n=3k2n=3k1n=3k(k1)

参考资料:《离散数学第2版(屈婉玲)》《离散数学学习指导与习题解析第2版(屈婉玲)》

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值