LSTM (long short-term memory) 长短期记忆网络,具体理论的就不一一叙述,直接开始
流程
一、数据导入
- 正常的 pandas 读取数据,将时间列转成索引(看其他教程这样做,感觉没啥用,按照时间顺序就行)
# 获取数据
import pandas as pd
from datetime import datetime
dataset = pd.read_csv('../data.csv', index_col='时间', usecols=[0,2,3,5], date_parser=lambda x:datetime.strptime(x, '%Y年%m月'))
dataset
二、数据归一化
- 将数据缩小到 0-1 范围,我这里将所有数据归到一列来,这样缩小范围就是一样的,后续可以直接用这个来转换
# 数据归一化
from sklearn.preprocessing import MinMaxScaler
values = dataset.values
# 转换成一列
values_res = values.reshape(values.shape[0] * values.shape[1], 1)
scaler = MinMaxScaler(feature_range=(0, 1))
# 训练 scaler
scaled = scaler.fit_transform(values_res)
# 再转换成原来的样子
scaled_dataset = scaled.reshape(values.shape)
scaled_dataset
三、划分训练集、测试集
- 数据需要按照时间顺序,所以这里之前前后切割 20%
# 切分训练集和测试集
split = round(len(scaled_dataset)*0.20)
train = scaled_dataset[:-split]
test = scaled_dataset[-split:]
test
四、划分标签和属性
- 数据的第一列是标签数据,第二三列是属性条件数据
# 划分标签和属性
train_x, train_y = train[:, 1:], train[:, 0]
test_x, test_y = test[:, 1:], test[:, 0]
test_x
五、转换成 LSTM 输入格式
- 转为LSTM模型的输入格式(samples, timesteps, features)
train_x_input = train_x.reshape((train_x.shape[0], 1, train_x.shape[1]))
test_x_input = test_x.reshape((test_x.shape[0], 1, test_x.shape[1]))
test_x_input
六、设计 LSTM 模型
- 设计 LSTM 模型有两个方式,第一个是知道最佳参数是什么,第二个是多输入几个参数,然后找到最佳参数
6.1 直接建模
# 设计 LSTM 模型
from tensorflow.keras.models import Sequential
<