复现mamba时配置环境的踩坑记录汇总(已成功复现)

背景:linux服务器上在docker容器内复现mamba,容器内环境是

pip 23.3.2

Python 3.8.0

CUDA Version 11.8.0

torch 2.0.0+cu118


使用pip install causal-conv1d 报错

报错:ERROR: Could not build wheels for causal-conv1d, which is required to install pyproject.toml-based projects

root@26fe4c104b24:/home/work/mamba-main# pip install causal-conv1d
  ##此处略过其他顺利的进程
    error: subprocess-exited-with-error
  
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [8 lines of output]
      
      
          torch.__version__  = 2.0.0+cu118
      
      
          running bdist_wheel
          Guessing wheel URL:  https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.1.3.post1/causal_conv1d-1.1.3.post1+cu118torch2.0cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
          error: <urlopen error [Er
### 创建 Mamba 虚拟环境 为了在 Windows 环境下创建并激活名为 `mamba` 的虚拟环境,可以按照如下方法操作: 通过命令提示符或 PowerShell 执行以下命令来创建新的 Conda 环境,并指定 Python 版本为 3.10.13[^1]。 ```bash conda create -n mamba python=3.10.13 ``` 接着,激活此新建立的环境: ```bash conda activate mamba ``` ### 使用 setup.py 文件安装特定包 对于需要利用 `setup.py` 来完成安装的情况,在进入目标项目路径之后执行下面这条语句即可实现安装过程[^2]: ```bash python setup.py install ``` 请注意这通常是在项目的根目录内找到 `setup.py` 后的操作;确保当前工作目录正确无误后再继续上述步骤。 ### 准备开发环境 考虑到具体的应用场景可能涉及深度学习框架 PyTorch 和其他库的支持,这里给出适用于 Windows 平台的一般指导原则[^3]。 #### 操作系统与硬件支持 虽然原始描述提到的是 Linux 下 NVIDIA GPU 支持,但在 Windows 上同样能够借助 CUDA 工具链获得类似的性能提升效果。确认已安装适合 Windows 的驱动程序以及对应的 Visual Studio C++ Build Tools 组件以便后续编译过程中不会遇到障碍。 #### 安装必要的软件依赖项 除了基础的语言解释器外,还需要考虑额外组件的选择: - **Python**: 推荐采用 Anaconda 发行版简化管理流程; - **PyTorch**: 访问官方网站获取针对不同配置优化过的二进制分发包链接; - **CUDA Toolkit**: 对应于所选用显卡型号及操作系统版本下载相应资源; 最后一步则是引入任何附加功能所需的第三方模块,比如因果卷积神经网络相关的扩展件: ```bash pip install causal-conv1d>=1.2.0 # 如果计划测试 demo 则可跳过此项 pip install mamba-ssm # 主要业务逻辑所需的核心服务端模型 ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值