yolov3用训练过的weights文件继续训练数据

背景

Windows10
yolov3(使用tiny-yolo训练在GPU下训练的数据,tiny-yolo使用见
对windows友好的darknet
darknet
在这里插入图片描述

方法

当训练到一定程度需要测试效果时,可以停止一下训练,方法:
单机命令行界面这才是暂停训练。暂停之后在命令行界面回车即可继续训练。
ctrl+c这种方法是直接退出训练。退出训练后:

1.使用权重文件进行单张图片测试:
此时在backup文件夹下有好多训练权重(.weight)文件。用其检测样本的代码如下:
darknet detector test data/char.data cfg/yolov3-tiny_char.cfg backup/yolov3-tiny_char_2700.weights data/test_images/210.jpg (其中data/210.jpg是所用测试图片的任意一路径)

2.继续训练:
检测完继续训练则用如下代码(转到darknet.exe所在的文件夹,比如我的是
F:\PRETA\NetCenter\TeamWorks\AI\otherSources\darknet-master01\build\darknet\x64):
darknet detector train data/char.data cfg/yolov3-tiny_char.cfg backup/yolov3-tiny_char_last.weights

当然了,如果需要在average loss框中显示mAP的计算线,在以上命令后加上-map即可:
darknet detector train data/char.data cfg/yolov3-tiny_char.cfg backup/yolov3-tiny_char_last.weights -map
效果如下所示:
在这里插入图片描述
————————————————
版权声明:本文为CSDN博主「hunterhe」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hunterhe/article/details/89923092

  • 7
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
医学图像分割是医学影像处理领域中的重要研究方向之一,其主要目的是在医学图像中自动分割出感兴趣的区域,如病变、器官等。在医学图像分割中,深度学习模型已经成为主流,而VNet是其中一种经典的模型,本文将介绍如何使用VNet完成医学图像分割模型训练的过程。 一、准备数据 在进行医学图像分割模型训练前,首先需要准备训练数据。医学图像分割领域中,常用的数据集有BRATS(脑肿瘤分割挑战赛数据集)、ISBI(国际生物医学影像分割挑战赛数据集)等。这里以BRATS数据集为例进行介绍。 BRATS数据集中包含多个病例的MRI图像,每个病例包含4个模态(T1、T1Gd、T2、Flair)的MRI图像和相应的肿瘤分割标签。其中,肿瘤分割标签分为4个类别:背景、坏死、水肿、肿瘤。 在进行数据预处理前,需要将MRI图像和标签进行配对。一般情况下,MRI图像和标签的名称中都包含有相同的病例编号,因此可以通过病例编号来进行配对。具体的配对方法可以参考以下代码: ```python import os image_folder = "path/to/image/folder" label_folder = "path/to/label/folder" save_folder = "path/to/save/folder" for image_name in os.listdir(image_folder): image_path = os.path.join(image_folder, image_name) label_name = image_name.replace("t1", "seg").replace("nii.gz", "nii") label_path = os.path.join(label_folder, label_name) save_name = image_name.replace("t1", "image") save_path = os.path.join(save_folder, save_name) cmd = f"med2image -i {image_path} -o {save_path} -z -1 -f nii.gz" os.system(cmd) save_name = image_name.replace("t1", "label") save_path = os.path.join(save_folder, save_name) cmd = f"med2image -i {label_path} -o {save_path} -z -1 -f nii" os.system(cmd) ``` 该代码中,首先设置MRI图像文件夹路径、标签文件夹路径和保存文件夹路径。然后,通过遍历MRI图像文件夹中的所有文件,获取对应的MRI图像和标签路径。根据文件名称的规律,生成保存文件的路径,然后使用med2image工具将MRI图像和标签转换为PNG格式,并保存到指定的文件夹中。 二、构建模型 在进行模型训练前,需要构建深度学习模型。VNet是一种经典的医学图像分割模型,其核心思想是将3D卷积神经网络和U-Net结构相结合,同时利用残差连接和批标准化等技术,提高模型的稳定性和精度。 以下是使用Keras实现VNet模型的代码: ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv3D, Conv3DTranspose, MaxPooling3D, UpSampling3D, BatchNormalization, concatenate, Activation def conv_block(inputs, filters, kernel_size=3, padding='same', strides=(1, 1, 1)): x = Conv3D(filters=filters, kernel_size=kernel_size, padding=padding, strides=strides)(inputs) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv3D(filters=filters, kernel_size=kernel_size, padding=padding, strides=strides)(x) x = BatchNormalization()(x) x = Activation('relu')(x) return x def up_conv_block(inputs, skip_inputs, filters, kernel_size=2, padding='same', strides=(2, 2, 2)): x = Conv3DTranspose(filters=filters, kernel_size=kernel_size, padding=padding, strides=strides)(inputs) x = concatenate([x, skip_inputs], axis=-1) x = conv_block(x, filters) return x def vnet(input_shape, num_classes): inputs = Input(shape=input_shape) # Contracting path c1 = conv_block(inputs, 16) p1 = MaxPooling3D(pool_size=(2, 2, 2))(c1) c2 = conv_block(p1, 32) p2 = MaxPooling3D(pool_size=(2, 2, 2))(c2) c3 = conv_block(p2, 64) p3 = MaxPooling3D(pool_size=(2, 2, 2))(c3) c4 = conv_block(p3, 128) p4 = MaxPooling3D(pool_size=(2, 2, 2))(c4) c5 = conv_block(p4, 256) # Expansive path u1 = up_conv_block(c5, c4, 128) u2 = up_conv_block(u1, c3, 64) u3 = up_conv_block(u2, c2, 32) u4 = up_conv_block(u3, c1, 16) outputs = Conv3D(filters=num_classes, kernel_size=1, activation='softmax')(u4) model = Model(inputs=inputs, outputs=outputs) return model ``` 该代码中,首先定义了卷积块函数和上采样卷积块函数,分别用于构建VNet模型的卷积层和上采样层。然后,定义了VNet模型的结构,包括输入层、压缩路径、扩张路径和输出层。其中,压缩路径由4个卷积块和最大池化层组成,扩张路径由4个上采样卷积块组成。 三、训练模型 在构建好模型后,就可以开始训练模型了。这里使用Keras框架中的fit函数进行模型训练。具体的代码如下: ```python import numpy as np from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint # 加载数据 train_images = np.load("path/to/train/images.npy") train_labels = np.load("path/to/train/labels.npy") test_images = np.load("path/to/test/images.npy") test_labels = np.load("path/to/test/labels.npy") # 将标签转换为one-hot编码 train_labels = to_categorical(train_labels, num_classes=4) test_labels = to_categorical(test_labels, num_classes=4) # 构建模型 input_shape = (128, 128, 128, 4) num_classes = 4 model = vnet(input_shape, num_classes) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-4), metrics=['accuracy']) # 设置回调函数 checkpoint = ModelCheckpoint("path/to/save/weights.h5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True, mode='min') # 训练模型 batch_size = 4 epochs = 100 history = model.fit(train_images, train_labels, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(test_images, test_labels), callbacks=[checkpoint]) ``` 该代码中,首先加载训练数据和测试数据,并将标签转换为one-hot编码。然后,构建VNet模型并编译模型。接着,设置回调函数,用于在训练过程中保存最好的模型权重。最后,使用fit函数训练模型。 四、模型评估 模型训练完成后,需要对模型进行评估。这里使用Keras框架中的evaluate函数进行模型评估。具体的代码如下: ```python # 加载测试数据 test_images = np.load("path/to/test/images.npy") test_labels = np.load("path/to/test/labels.npy") test_labels = to_categorical(test_labels, num_classes=4) # 加载模型权重 model.load_weights("path/to/save/weights.h5") # 模型评估 score = model.evaluate(test_images, test_labels, verbose=0) print("Test Loss:", score[0]) print("Test Accuracy:", score[1]) ``` 该代码中,首先加载测试数据,并将标签转换为one-hot编码。然后,加载训练过程中保存的最好模型权重,并使用evaluate函数对模型进行评估。 五、模型预测 模型评估完成后,可以使用训练好的模型对新的医学图像进行分割预测。具体的代码如下: ```python import nibabel as nib import numpy as np # 加载待预测的MRI图像 image_path = "path/to/image.nii.gz" image = nib.load(image_path).get_data() # 对MRI图像进行预处理 image = np.transpose(image, (2, 0, 1)) image = np.expand_dims(image, axis=-1) image = np.pad(image, ((0, 0), (20, 20), (20, 20), (20, 20), (0, 0)), mode='constant') # 加载模型权重 model.load_weights("path/to/save/weights.h5") # 进行预测 pred = model.predict(image) # 保存预测结果 pred = np.argmax(pred, axis=-1) pred = np.transpose(pred, (1, 2, 0)) pred = pred[20:-20, 20:-20, 20:-20] pred_nii = nib.Nifti1Image(pred, affine=np.eye(4)) nib.save(pred_nii, "path/to/prediction.nii.gz") ``` 该代码中,首先加载待预测的MRI图像,并进行预处理。然后,加载训练过程中保存的最好模型权重,并使用predict函数对MRI图像进行分割预测。最后,将预测结果保存为NIfTI格式的文件

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值