机器学习周志华笔记系列-第五章-神经网络(欢迎讨论)

系列背景:

从周志华机器学习第四章开始,总结每章的知识点。

非科班,能源工科,复习过考研微积分,线性代数,概率论。机器学习小白。

所以总结机器学习方法的思想,尽量不涉及数学工具,如矩阵微分、奇异值分解、凸优化、概率论共轭分布、KL散度等(书中附录)。

结构简单,问题导向,每个问题分为:问题,思想,其他方法和比较,具体方法,思考,其他。

思考部分为自己提出的一些问题,欢迎大家提出自己的想法

欢迎讨论

 

第五章 神经网络

 

1.问题:神经网络解决什么问题

解答:同线性模型和决策树一样,用来表示因果关系

思想:人类神经系统的基本组成单位是神经元,神经元的工作过程是神经元受刺激(输入)之后电位发生变化,当电位达到阈值时,释放物质(输出)刺激与它相连的神经元,如此将刺激传递下去。神经网络正是将这一过程模型化,神经网络的神经元接收与其连接的神经元的输入(输入用数来表示),为表示不同神经元的影响不同,将输入加权求和作为神经元的输入,神经元接收输入后与阈值作差,最后用激活函数处理,判断对后续神经元是否产生影响。所以理想的激活函数是阶跃函数,但阶跃函数不连续不光滑,所以用sigmoid函数近似。

其他方法和比较:既然都是表示因果关系,神经网络与线性模型和决策树的区别在哪。在我看来,线性模型是一个简单的线性函数,而神经网络和决策树更像是一种函数组织方式。决策树的基本单元是测试节点,它将节点以分支的形式(从下到上)组织起来(类似数据结构中的树)。神经网络的基本单元是神经元,用网络将它们组织起来&#x

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您解答这个问题!本次我们将学习如何用 Python 实现《机器学习教授第十四章中的概率图模型习题。在这里,我们将使用 Python 的 pgmpy 库来构建和分析概率图模型。 首先,我们需要安装 pgmpy。可以使用 pip 安装: ```python pip install pgmpy ``` 安装完成后,我们就可以开始实现习题了。 #### 习题 14.1 考虑一个三元组 $(X, Y, Z)$,其中 $X$ 是二元随机变量,$Y, Z$ 是一元随机变量,试构造一个无向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个无向图模型。代码如下: ```python from pgmpy.models import MarkovModel # 创建一个空的无向图模型 model = MarkovModel() # 添加变量节点 model.add_nodes_from(['X', 'Y', 'Z']) # 添加边 model.add_edges_from([('X', 'Y'), ('X', 'Z')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y', 'Z'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的无向图模型,然后添加了三个变量节点 $X, Y, Z$ 和两条边 $(X, Y), (X, Z)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 #### 习题 14.2 考虑一个四元组 $(X_1, X_2, X_3, X_4)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image.png](attachment:image.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X3', 'X2'), ('X4', 'X2')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了四个变量节点 $X_1, X_2, X_3, X_4$ 和四条边 $(X_2, X_1), (X_3, X_1), (X_3, X_2), (X_4, X_2)$。最后,我们打印出了模型的边结构。 #### 习题 14.3 考虑一个五元组 $(X_1, X_2, X_3, X_4, X_5)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-2.png](attachment:image-2.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X2'), ('X5', 'X3')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了五个变量节点 $X_1, X_2, X_3, X_4, X_5$ 和五条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_2), (X_5, X_3)$。最后,我们打印出了模型的边结构。 #### 习题 14.4 考虑一个六元组 $(X_1, X_2, X_3, X_4, X_5, X_6)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-3.png](attachment:image-3.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5', 'X6']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X3'), ('X6', 'X4'), ('X6', 'X5')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了六个变量节点 $X_1, X_2, X_3, X_4, X_5, X_6$ 和六条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_3), (X_6, X_4), (X_6, X_5)$。最后,我们打印出了模型的边结构。 #### 习题 14.5 考虑一个二元组 $(X, Y)$,其中 $X$ 是一元随机变量,$Y$ 是二元随机变量,试构造一个有向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X', 'Y1', 'Y2']) # 添加边 model.add_edges_from([('X', 'Y1'), ('X', 'Y2')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y1', 'Y2'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了三个变量节点 $X, Y_1, Y_2$ 和两条边 $(X, Y_1), (X, Y_2)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 以上就是本次的答案,希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值