数字图像处理的python实践(6)——双线性插值算法

本文探讨了双线性插值在图像旋转中的应用,通过实例展示了如何使用Python进行实现。在实践中遇到数值溢出的问题,经过分析发现是由于uint8数据类型在处理像素灰度值时可能出现溢出,解决方案是对涉及加减运算的部分进行数据类型转换,以避免计算错误。
摘要由CSDN通过智能技术生成

       该章节的目的是讨论双线性插值在图像旋转中的效果。基本引用上一篇文章中的旋转的代码,其中使用的是最近邻插值,取而代之。

       线性插值,一维情况下,即我们有两个点(x_0,y_0)(x_1,y_1),现在要用线性插值求x(x_0\leq x\leq x_1)的数值为

f(x)=\frac{y_1-y_0}{x_1-x_0}(x-x_0)+y_0

       那么双线性插值也是一样的思维,从下图中可以看出,现在一个方向上做插值,然后再在另一个方向上做插值,得到的结果即使我们点所要取的数值。

图片引用自百度百科

        但是具体在实现时有一些问题需要注意,在输出图像中的像素点映射到输入图像中时,可能得到三种,恰好就在点阵上;也有可能不落在点阵上但落在相邻像素点之间的连线上,这种只需要一次插值即可;第三种就是不符合前两种,必须两次插值。我们对于在点阵上的,直接引用数值就可以了。另外两种情况就要判断,但是映射的位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值