本文介绍 LangChain 的输出解析器OutputParser
的使用,和基于LangChain的LCEL
构建链
。
1. 输出解析器OutputParser
1.1、为什么需要OutputParser
常规的使用LangChain构建LLM应用的流程是:Prompt 输入、调用LLM 、LLM输出。有时候我们期望LLM给到的数据是格式化的数据,方便做后续的处理。
这时就需要在Prompt里设置好要求,然后LLM会在输出内容后,再将内容传给输出解析器,输出解析器会解析成我们预期的格式。
1.2、代码实践
调用系统自带的输出解析器
示例1:将调用 LLM 的结果,解析为逗号分隔的列表。比如询问某个城市有N个景点。
from langchain_openai import ChatOpenAI
from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
("system", "{parser_instructions}"),
("human", "列出{cityName}的{viewPointNum}个著名景点。")
])
output_parser = CommaSeparatedListOutputParser()
parser_instructions = output_parser.get_format_instructions()
# 查看解析器的指令内容
print(parser_instructions)
final_prompt = prompt.invoke({"cityName": "南京", "viewPointNum": 3, "parser_instructions": parser_instructions})
model = ChatOpenAI(model=&#