数学中的各种矩阵大总结

1、单位矩阵(Identity Matrix)


如果A矩阵可逆,其逆矩阵为A-1,那么AA-1 = I,这里 I 就是单位矩阵。形式上,单位矩阵 I 是一个n×n的方阵,其主对角线上的元素都是1,其余位置的元素都为0。因此,单位矩阵也可以记为 In = diag(1, 1, ..., 1)。


2、上三角矩阵/下三角矩阵


在线性代数中,三角矩阵是方形矩阵的一种,如下图所示,该矩阵的下三角(不包括主对角线)的元素均为常数0,则称其为一个上三角矩阵。


与上三角矩阵相反,如果一个矩阵的主对角线上方均为常数0,则称该矩阵为下三角矩阵,例如:


3、Toeplitz 矩阵


Toeplitz矩阵又叫做常对角矩阵(diagonal-constant matrix),指矩阵中每条自左上至右下的斜线上之元素都为同一常数的矩阵。例如下面就是一个Toeplitz矩阵的例子:


任意n×n的Toeplitz矩阵具有如下形式:


最常见的Toeplitz矩阵是对称Toeplitz矩阵,这种矩阵仅由第一行元素就可以完全确定。


4、Hermitian 矩阵


对于一个复矩阵A,其共轭转置记为A*。如果A = A*,则称为Hermitian矩阵。例如,


显然,如果一个实矩阵是对称的,那么它也是一个Hermitian矩阵。

此外,如果一个复Toeplitz矩阵中之元素满足复共轭对称关系,则称其为Hermitian Toeplitz矩阵


5、循环矩阵(Circulant Matrix


循环矩阵是Toeplitz矩阵的一种特殊形式,如下所示,当给定矩阵的第一行时,矩阵的后一行都是由前一行向右循环移位得到的。


6、酉矩阵(Unitary Matrix)与正交矩阵


A ∈ Mn×n(C), A*A = AA* = I, then A is unitary; A ∈ Mn×n(R), ATA = AAT = I, then A is orthogonal。


7、Hessian 矩阵


形如下面样子的矩阵,具体请参考《Hessian矩阵与多元函数极值》。


8、Vandermonde 矩阵



9、Fourier矩阵







10、拉普拉斯矩阵(Laplacian matrix)


拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,其中为图的度矩阵,为图的邻接矩阵。例如,给定一个简单的图,如下(例子来自wiki百科):


把此“图”转换为邻接矩阵的形式,记为A:


把W的每一列元素加起来得到N个数,然后把它们放在对角线上(其它地方都是零),组成一个N×N的对角矩阵,记为度矩阵D,如下图所示。其实度矩阵(对角线元素)表示的就是原图中每个点的度数,即由该点发出的边之数量。


根据拉普拉斯矩阵的定义L = D-A,可得拉普拉斯矩阵L 为:

显然,拉普拉斯矩阵都是对称的。此外,另外一种更为常用的拉普拉斯矩阵形式是正则化的拉普拉斯矩阵(Symmetric normalized Laplacian),定义为:


该矩阵中的元素由下面的式子给出:



附录、循环矩阵的对角化


前面Part 5中介绍的循环矩阵有一个很特殊的性质,即它可以被Fourier矩阵对角化,即有:



* 8-9 来自《矩阵分析与应用》(张贤达 著)

* 补充循环矩阵对角化的一个英文资料 (Iterative Methods for Toeplitz Systems, Michael K. Ng, Oxford University Press)




(本文完)

### 回答1: "朝着工业异常检测的全面回忆迈进"是指致力于实现在工业生产过程中对异常情况的全面回溯和记录。这样的系统可以帮助企业快速识别和解决异常情况,提高生产效率和质量。实现这样的系统需要采集量的生产数据,并利用先进的算法进行处理和分析。同时,还需要建立可靠的数据存储和管理系统,确保数据的完整性和安全性。总的来说,实现工业异常检测的全面回溯需要跨学科的协作和技术的支持。 ### 回答2: 在工业系统中,异常检测是一个非常关键的任务,一旦异常被检测到,可以及时采取措施来避免生产线的停滞和工业事故的发生。为了提高异常检测的准确性和效率,研究人员正在不断尝试将人类的记忆方式应用到机器学习中,实现“完全回忆”。 目前,工业异常检测中常用的方法是基于统计学的方法,但这些方法的缺点是需要量的数据和专业知识,而且无法处理复杂和多变的数据。相反,人类的脑能够准确地理解环境中的各种信号,并快速地做出反应。为了实现这种类似于人类的记忆功能,人工智能领域提出了不同的方法,如深度学习、神经网络等。 其中,深度学习已经被证明是在工业异常检测中最有效的方法之一,尤其是在处理量数据时。深度学习模型可以通过输入工业数据和异常数据进行训练,在预测生产过程中的异常时表现出色。但是,为了实现“完全回忆”,还需要解决模型在面对新型异常时的适应问题。 一个可能的解决方案是构建一个基于迁移学习的模型,该模型可以从已有的异常数据中学习到经验,并在发现新型异常时自动适应。此外,研究人员可以尝试使用更加先进的人工智能技术,如注意力机制和增强学习,来提高模型的准确性和可靠性。 总之,通过应用类似于人类记忆功能的深度学习模型和其他人工智能技术,工业异常检测可以更加准确、高效,并可以实现“完全回忆”。这将对工业生产的安全和效率有着积极的影响。 ### 回答3: 近年来,随着物联网技术的快速发展,量的传感器数据被收集并用于工业异常检测。异常检测是工业生产中非常重要的一个环节,它能帮助企业实时识别和处理生产过程中的异常情况,从而提高生产效率、降低成本、提升产品质量。但工业环境下存在各种噪声、复杂运行条件和复杂的生产过程等挑战,因此确保工业异常检测的精确性至关重要。 为了实现更精确的工业异常检测,研究人员提出了“全面回忆”的概念,旨在通过利用所有可用信息来识别一些异常情况。具体来说,全面回忆从三个方面着手:一是从数据收集开始,尽可能多地收集机器的输出数据。二是利用深度学习等技术有效地处理这些数据,从而进行分类和聚类分析。三是结合专家领域知识,利用额外的信息来完成异常识别和分析。 实现全面回忆的目标需要考虑多个方面的技术挑战。首先,需要设计创新的数据集、流水线和算法,以捕获复杂工业环境中的多方面信息和随时间变化的变化情况。其次,需要利用规模的计算机资源来实现高效的数据处理和模型训练。此外,还需要设计到位的专家领域知识建模和融合策略,以确保高准确度和高鲁棒性的异常检测。 总之,全面回忆是工业异常检测研究领域的一个重要方向,它将为挖掘量生产数据提供强有力的支持,有望为工业生产的智能化和智能化水平提高做出重要贡献。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值