最优化理论与设计——最优化设计的基本概念

1. 最优化设计概述

它的基本涵义是在设计或管理工程系统时,如果存在不止一种可行方案,则总希望从一切可行方案中选取一个最佳方案,这一选择过程称为最优化设计或最优化。

优化设计是在20世纪六十年代随计算机技术而发展起来的一门新学科、一种现代设计方法。它以“数学规化论”为理论基础,借助于电子计算机及计算软件,自动化的、迅速的进行探优。也就是说,最优化的目的就是寻求最佳的设计方案。

最优化设计主要解决的问题:

  1. 建模
    即建立最优化问题的数学模型。应用相关的专业理论,将设计问题用数学的形式进行描述。
  2. 解模(主要)
    即运用最优化方法借助于计算机求出模型的最优解。分为三步:(1)根据数学模型的数学性态选用合适优化方法;(2)对模型和优化方法进行程序设计和编码、上机调试求解;(3)分析解的现实实用性

2. 最优化设计的数学模型

2.1. 两个引例

最优化设计的数学模型究竟是什么样子的呢,我们先来看两个引例。

引例1
题干:要用薄钢板制造一个体积为5 m 3 m^3 m3的无盖货箱。要求其长度不小于4 m m m。问:长、宽、高为多少时用料最省?
:设其长、宽、高分别为 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3,用料数为 S ( x 1 , x 2 , x 3 ) S(x_1,x_2,x_3) S(x1,x2,x3)
在这里插入图片描述
则有以下数学模型:
min ⁡ S ( x 1 , x 2 , x 3 ) = min ⁡ ( x 1 x 2 + 2 ( x 2 x 3 + x 1 x 3 ) ) \min S(x_1,x_2,x_3)=\min \bigl(x_1x_2+2(x_2x_3+x_1x_3)\bigr) minS(x1,x2,x3)=min(x1x2+2(x2x3+x1x3)) 满足于: x 1 ⩾ 4 x 2 ⩾ 0 x 3 ⩾ 0 x 1 x 2 x 3 = 5 \begin{aligned} \text{满足于:}x_1 & \geqslant 4 \\ x_2 & \geqslant 0 \\ x_3 & \geqslant 0 \\ x_1x_2x_3 & = 5 \\ \end{aligned} 满足于:x1x2x3x1x2x3400=5

引例2
题干:某工厂生产甲、乙两种产品,生产每种产品所需的材料、工时、电力、利润以及材料供应量见下表。为使每天可能获得的利润最大,试确定两种产品每天的产量。

产品材料/kg工时/h电力/(kw/h)利润/元
93460
4105120
供应量3603002000

:设每天生产甲产品 x 1 x_1 x1件,乙产品 x 2 x_2 x2件,每天获得的利润用 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)表示。则有以下数学模型: max ⁡ f ( x 1 , x 2 ) = max ⁡ ( 60 x 1 + 120 x 2 ) \max f(x_1,x_2)=\max\bigl(60x_1+120x_2\bigr) maxf(x1,x2)=max(60x1+120x2) 满足于: 9 x 1 + 4 x 2 ⩽ 360 3 x 1 + 10 x 2 ⩽ 300 4 x 1 + 5 x 2 ⩽ 2000 x 1 ⩾ 0 x 2 ⩾ 0 \begin{aligned} \text{满足于:}9x_1+4x_2 & \leqslant 360 \\ 3x_1+10x_2 & \leqslant 300 \\ 4x_1+5x_2 & \leqslant 2000 \\ x_1 & \geqslant 0 \\ x_2 & \geqslant 0 \\ \end{aligned} 满足于:9x1+4x23x1+10x24x1+5x2x1x2360300200000

2.2. 最优化数学模型

由此2.1.中两个引例可得最优化数学模型的一种标准形式为: min ⁡ x ∈ X → f ( X → ) \min_{x\in \overrightarrow{X}}f(\overrightarrow{X}) xX minf(X ) s.t. g u ( X → ) ⩽ 0 u = 1 , 2 , . . . , m h v ( X → ) = 0 v = 1 , 2 , . . . , p ⩽ n \begin{aligned} \text{s.t.}\qquad g_{u}(\overrightarrow{X}) & \leqslant 0\qquad u=1,2,...,m \\ h_{v}(\overrightarrow{X}) & = 0\qquad v=1,2,...,p\leqslant n \\ \end{aligned} s.t.gu(X )hv(X )0u=1,2,...,m=0v=1,2,...,pn

其中, f ( X → ) f(\overrightarrow{X}) f(X )为目标函数,即最优化的目标; X → \overrightarrow{X} X 为设计变量向量,即待求解的参数; s.t. \text{s.t.} s.t.是Subject to,即约束条件; g u ( X → ) g_{u}(\overrightarrow{X}) gu(X )表示有 u u u个不等式约束; h v ( X → ) h_{v}(\overrightarrow{X}) hv(X )表示有 p p p个等式约束, p p p小于 x x x的数量( p < n p<n p<n有多个解, p = n p=n p=n只有唯一解, p > n p>n p>n一般情况下无解或者解与 p = n p=n p=n时一致)。

该最优化数学模型可以根据以下两个方面进行数学性态的划分:

  1. u = 0 , v = 0 u=0,v=0 u=0,v=0则为无约束优化问题,否则为约束优化问题;
  2. f ( X → ) f(\overrightarrow{X}) f(X ) g u ( X → ) g_{u}(\overrightarrow{X}) gu(X ) h v ( X → ) h_{v}(\overrightarrow{X}) hv(X )均是线性函数,则为线性规划问题(引例2),否则为非线性规划问题(引例1)。
2.2.1. 设计变量

一个最优化系统中有很多参数,这些参数大致可以分为两类:

  1. 预知参数
    又称设计常量,是最优化系统中可事先确定的参数;
  2. 设计变量
    又称决策变量,是由最优化决定的参数,在优化过程中动态变化。

对于预知参数我们往往不需要花太多精力去关注,甚至大多数时候预知参数在整个优化过程中是一成不变的,例如 引例2 题干中给出的数据。因此我们重点关注设计变量。

设计变量向量表示为: X → = { x 1 , x 2 , x 3 , . . . , x n } T \overrightarrow{X}=\{x_1,x_2,x_3,...,x_n\}^T X ={x1,x2,x3,...,xn}T其中 X → \overrightarrow{X} X 是设计变量向量,其端点表示一个设计点(即一个最优化设计方案),所有设计点的集合称为设计空间; x i , i = 1 , 2 , 3 , . . . , n x_i,i=1,2,3,...,n xi,i=1,2,3,...,n表示 X → \overrightarrow{X} X 沿第 i i i个坐标轴的分量,即一个设计变量; n n n表示设计变量向量的维度,也即设计的自由度。

当我们求解出一个最优设计方案时,这个最优解可以表示为: X → ∗ = { x 1 ∗ , x 2 ∗ , x 3 ∗ , . . . , x n ∗ } T \overrightarrow{X}^*=\{x_1^*,x_2^*,x_3^*,...,x_n^*\}^T X ={x1,x2,x3,...,xn}T

如下图所示是设计变量向量的2维和3维表示:

在这里插入图片描述

2.2.2. 目标函数

目标函数是指在最优化设计中预期要达到的目标,表示为: f ( X → ) = f ( x 1 , x 2 , x 3 , . . . , x n ) f(\overrightarrow{X})=f(x_1,x_2,x_3,...,x_n) f(X )=f(x1,x2,x3,...,xn)其中, f ( X → ) f(\overrightarrow{X}) f(X )称为目标函数(或评价函数),它是最优化设计预期目标的数学表达式,是设计变量 x i , i = 1 , 2 , . . . , n x_i,i=1,2,...,n xi,i=1,2,...,n的函数。

2.2.2.1. 极大化目标与极小化目标

在现实世界中,最优化预期目标通常分为两类:

  1. 极大化目标(效果目标)
    例如:例如、产值、增益、效益、生产率、可靠性、精度等等;
  2. 极小化目标(成本目标)
    例如:成本、时间、重量、体积、人力、材料、损耗、误差等等。

极大化目标和极小化目标可以相互转换。设已有目标函数 min ⁡ f ( X → ) \min f(\overrightarrow{X}) minf(X ),若要求 max ⁡ f ( X → ) \max f(\overrightarrow{X}) maxf(X ),则可令: max ⁡ f ( X → ) = min ⁡ [ − f ( X → ) ] \max f(\overrightarrow{X})=\min [-f(\overrightarrow{X})] maxf(X )=min[f(X )] max ⁡ f ( X → ) = min ⁡ 1 f ( X → ) \max f(\overrightarrow{X})=\min \frac{1}{f(\overrightarrow{X})} maxf(X )=minf(X )1

2.2.2.2. 单目标与多目标

有时候我们需要同时优化多个目标,此时的最优化问题就称为多目标优化问题。对于单目标优化问题,计算表达式就是: f ( X → ) = f ( X → ) f(\overrightarrow{X})=f(\overrightarrow{X}) f(X )=f(X )对于多目标优化问题,其计算表达式为: f ( X → ) = ∑ j = 1 m w j f j ( X → ) , w j = w j 1 ⋅ w j 2 f(\overrightarrow{X})=\sum_{j=1}^{m}w_jf_j(\overrightarrow{X}),\qquad w_j=w_{j1}·w_{j2} f(X )=j=1mwjfj(X ),wj=wj1wj2其中, w j w_j wj称为加权因子; w j 1 > 0 w_{j1}>0 wj1>0称为本征因子(权重参数),用来平衡各分目标函数 f j ( X → ) f_j(\overrightarrow{X}) fj(X )的重要程度; w j 2 > 0 w_{j2}>0 wj2>0称为校正因子(归一化参数),用来调节各分目标函数 f j ( X → ) f_j(\overrightarrow{X}) fj(X )在数量级上的差别。

2.2.2.3. 等值线、等值面、等值超曲面

为了在高维空间上更方便地求解极值,我们定义了目标函数的等值线(等值面、等值超曲面),它是具有相等目标函数值的设计点所构成的平面曲线(空间平面或超曲面),表达为: f ( X → ) = C i , i = 1 , 2 , . . . , n f(\overrightarrow{X})=C_i,\qquad i=1,2,...,n f(X )=Ci,i=1,2,...,n

在这里插入图片描述

以n=2为例,等值线有如下特殊性质:

  1. 等值线表示了 f ( X → ) f(\overrightarrow{X}) f(X )值的变化情况(函数的性态);越内层目标函数值越小(或越大,取决于目标函数的定义);等值线越稠密目标函数值变化越快,反之越慢;
  2. 不同值的等值线、面不相交,否则就是一个混沌系统;
  3. 等值线集的中心点即是最优解 X → ∗ \overrightarrow{X}^* X
2.2.3. 约束条件

最优化设计一般都是在有约束的情况下进行的,所谓约束,就是对设计变量的取值加上的限制条件。

约束条件按表达形式可以分为两类:

  1. 不等式约束: g u ( X → ) ⩽ 0 , u = 1 , 2 , . . . , m g_u(\overrightarrow{X})\leqslant 0,\qquad u=1,2,...,m gu(X )0,u=1,2,...,m
  2. 等式约束: h v ( ( X → ) = 0 , v = 1 , 2 , . . . , p < n h_v((\overrightarrow{X})=0,\qquad v=1,2,...,p<n hv((X )=0,v=1,2,...,p<n

按性质可以分为两类:

  1. 性能约束(隐式约束)
    即设计变量必须满足的性能要求,例如强度、刚度等等
  2. 边界约束(显式约束)
    即设计变量的上下限: a i ⩽ x i ⩽ b i a_i\leqslant x_i\leqslant b_i aixibi

直观地说,约束条件的意义在于在平面(空间、超空间)上构造了约束线(或约束面),下面我们用二维图形来展示约束条件的几何意义。

对于不等式约束条件 g u ( X → ) ⩽ 0 g_u(\overrightarrow{X})\leqslant 0 gu(X )0,有如下几何意义。下图中, g u ( X → ) ⩽ 0 g_u(\overrightarrow{X})\leqslant 0 gu(X )0以及 g u ( X → ) = 0 g_u(\overrightarrow{X})= 0 gu(X )=0处是可行域, g u ( X → ) ⩾ 0 g_u(\overrightarrow{X})\geqslant 0 gu(X )0处为非可行域,可行域内的所有独立点称为可行点,代表最优化模型的一个解,而 g u ( X → ) = 0 g_u(\overrightarrow{X})= 0 gu(X )=0这条约束线上的就是最优化模型的最优解。
在这里插入图片描述

当有多个不等式约束条件时,就会有如下情况。下图中,最优化模型的解都在可行域 D D D内,四条约束线上的解就是最优化模型的最优解。

在这里插入图片描述

当不等式约束与等式约束相组合时,有如下情况。只有在可行域 D D D内,且在约束线 h 1 ( X → ) = 0 h_1(\overrightarrow{X})=0 h1(X )=0上的解才是最优化模型的解。只有 g 1 ( X → ) = 0 g_1(\overrightarrow{X})=0 g1(X )=0 h 1 ( X → ) = 0 h_1(\overrightarrow{X})=0 h1(X )=0,以及 g 2 ( X → ) = 0 g_2(\overrightarrow{X})=0 g2(X )=0 h 1 ( X → ) = 0 h_1(\overrightarrow{X})=0 h1(X )=0相交的点才是最优化模型的最优解。

在这里插入图片描述

假如此时有两个等式约束,那就会有如下情况。如下图所示,只有可行域D内的黑点是最优化系统的唯一可行解,它可以称为最优解因为它是唯一的没有其他更好的解了,也可以说它不是最优解因为它不满足任何一个不等式约束。
在这里插入图片描述

3. 最优化问题的几何解释

2.2.3. 约束条件中就是用来几何图解来理解二维最优化问题。虽然几何图解法基本上没有什么实用价值,但可由直观的二维图解建立优化求解的基本概念,对掌握最优解的存在和规律,后面的多维问题的学习打下基础。

我们再用一个几何解释的例子来说明约束优化和无约束优化的区别:
设有如下最优化模型: min ⁡ f ( X → ) = x 1 2 + x 2 2 − 4 x 1 + 4 \min f(\overrightarrow{X})=x_1^2+x_2^2-4x_1+4 minf(X )=x12+x224x1+4 s.t. g 1 ( X → ) = x 2 − x 1 ⩽ 0 g 2 ( X → ) = x 1 2 − x 2 + 1 ⩽ 0 g 3 ( X → ) = − x 1 ⩽ 0 \begin{aligned} \text{s.t.}\qquad g_1(\overrightarrow{X})& =x_2-x_1 \leqslant 0 \\ g_2(\overrightarrow{X})& =x_1^2-x_2+1 \leqslant 0 \\ g_3(\overrightarrow{X})& =-x_1 \leqslant 0 \\ \end{aligned} s.t.g1(X )g2(X )g3(X )=x2x10=x12x2+10=x10

解:易发现, f ( X → ) f(\overrightarrow{X}) f(X )是一个圆,于是将它转换为: min ⁡ f ( X → ) = x 2 2 + ( x 1 − 2 ) 2 \min f(\overrightarrow{X})=x_2^2+(x_1-2)^2 minf(X )=x22+(x12)2若此时不关注约束条件,即现在为一个无约束优化问题。那么很显然当 x 1 = 2 x_1=2 x1=2 x 2 = 0 x_2=0 x2=0时有最优解 min ⁡ f ( X → ) = 0 \min f(\overrightarrow{X})=0 minf(X )=0

若此时关注约束条件,则约束条件在二维平面中可表示为下面的右图,即限定可行域(红色)的情况下,选取离与无约束最优解最近的解:
在这里插入图片描述

最优化理论与方法袁亚湘pdf》是袁亚湘所著的一本关于最优化理论和方法的教材,本书共分为六章,分别介绍了最优化问题的基本概念最优化理论数学基础、无约束极值问题、约束极值问题、对偶问题及非线性规划等内容。 首先,本书介绍了最优化问题的定义、基本概念数学描述,旨在帮助读者了解最优化问题的本质和相关的数学知识。其次,本书详细介绍了最优化理论数学基础,包括凸集、凸函数、KKT条件等内容,这些基本理论为后续章节的学习和应用提供了前提。 然后,本书重点讲解了无约束极值问题和约束极值问题的求解方法。对于无约束极值问题,介绍了梯度下降法、共轭梯度法等常用的优化算法;对于约束极值问题,介绍了等式约束问题和不等式约束问题的拉格朗日函数和KKT条件等相关内容。 此外,本书还涉及到对偶问题的理论和求解方法,以及非线性规划问题的求解。这些内容为读者提供了更广阔的应用领域和方法选择。 总的来说,袁亚湘的《最优化理论与方法》通过系统的介绍和讲解,使读者能够了解最优化问题的基本概念数学理论及其实际应用,并为读者提供了一些常用的优化方法和技巧。无论是作为学习教材,还是作为参考书,本书对于研究最优化理论和方法的读者来说都是一本不可多得的资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值