24个基本积分:
① ∫ k d x = k x + C \int k dx = kx + C ∫kdx=kx+C
② ∫ x u d x = x u + 1 u + 1 + C \int x^u dx = \frac{x^{u+1}}{u+1} + C ∫xudx=u+1xu+1+C
③ ∫ 1 x d x = ln ∣ x ∣ + C \int\frac{1}{x}dx = \ln|x| + C ∫x1dx=ln∣x∣+C
④
∫
1
1
+
x
2
d
x
=
arctan
x
+
C
=
−
a
r
c
c
o
t
x
+
C
\int \frac{1}{1+x^2}dx = \arctan x + C = -arccot x + C
∫1+x21dx=arctanx+C=−arccotx+C
⑤
∫
1
1
−
x
2
=
arcsin
x
+
C
=
−
arccos
x
+
C
\int \frac{1}{\sqrt{1-x^2}} = \arcsin x +C = -\arccos x + C
∫1−x21=arcsinx+C=−arccosx+C
⑥
∫
cos
x
d
x
=
sin
x
+
C
\int \cos xdx = \sin x +C
∫cosxdx=sinx+C
⑦
∫
sin
x
d
x
=
−
cos
x
+
C
\int \sin xdx = -\cos x + C
∫sinxdx=−cosx+C
⑧
∫
1
c
o
s
2
x
d
x
=
∫
sec
2
x
d
x
=
tan
x
+
C
\int \frac{1}{cos^2x}dx = \int \sec^2 xdx = \tan x + C
∫cos2x1dx=∫sec2xdx=tanx+C
⑨
∫
1
s
i
n
2
x
d
x
=
∫
csc
2
x
d
x
=
−
cot
x
+
C
\int \frac{1}{sin^2x}dx = \int \csc^2 xdx = -\cot x + C
∫sin2x1dx=∫csc2xdx=−cotx+C
⑩
∫
sec
x
tan
x
d
x
=
sec
x
+
C
\int \sec x\tan xdx = \sec x + C
∫secxtanxdx=secx+C
⑪
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
\int \csc x\cot xdx = -\csc x + C
∫cscxcotxdx=−cscx+C
⑫
∫
e
x
d
x
=
e
x
+
C
\int e^xdx = e^x + C
∫exdx=ex+C
⑬
∫
a
x
d
x
=
a
x
ln
a
+
C
\int a^xdx = \frac{a^x}{\ln a} + C
∫axdx=lnaax+C
⑭
∫
s
h
x
d
x
=
c
h
x
+
C
\int sh xdx = chx + C
∫shxdx=chx+C
⑮
∫
c
h
x
d
x
=
s
h
x
+
C
\int ch xdx = shx + C
∫chxdx=shx+C
⑯
∫
tan
x
d
x
=
−
ln
∣
cos
x
∣
+
C
\int \tan xdx = -\ln|\cos x| + C
∫tanxdx=−ln∣cosx∣+C
⑰
∫
cot
x
d
x
=
ln
∣
sin
x
∣
+
C
\int \cot xdx = \ln|\sin x| + C
∫cotxdx=ln∣sinx∣+C
⑱
∫
sec
x
d
x
=
ln
∣
sec
x
+
tan
x
∣
+
C
\int \sec xdx = \ln|\sec x + \tan x| + C
∫secxdx=ln∣secx+tanx∣+C
⑲
∫
csc
x
d
x
=
ln
∣
c
s
c
x
−
cot
x
∣
+
C
\int \csc xdx = \ln|csc x - \cot x| + C
∫cscxdx=ln∣cscx−cotx∣+C
⑳
∫
1
x
2
+
a
2
d
x
=
1
a
arctan
x
a
+
C
\int \frac{1}{x^2 + a^2}dx = \frac{1}{a}\arctan \frac{x}{a} + C
∫x2+a21dx=a1arctanax+C
㉑
∫
1
x
2
−
a
2
d
x
=
1
2
a
ln
∣
x
−
a
x
+
a
∣
+
C
\int \frac{1}{x^2 - a^2}dx = \frac{1}{2a}\ln|\frac{x - a}{x+a}| + C
∫x2−a21dx=2a1ln∣x+ax−a∣+C
㉒
∫
1
a
2
−
x
2
d
x
=
arcsin
x
a
+
C
\int \frac{1}{\sqrt{a^2 - x^2}}dx = \arcsin \frac{x}{a} + C
∫a2−x21dx=arcsinax+C
㉓
∫
1
x
2
+
a
2
d
x
=
ln
(
x
+
x
2
+
a
2
)
+
C
\int \frac{1}{\sqrt{x^2 + a^2}}dx = \ln(x + \sqrt{x^2 + a^2}) + C
∫x2+a21dx=ln(x+x2+a2)+C
㉔
∫
1
x
2
−
a
2
d
x
=
ln
∣
x
+
x
2
−
a
2
∣
+
C
\int \frac{1}{\sqrt{x^2 - a^2}}dx = \ln|x + \sqrt{x^2 - a^2}| + C
∫x2−a21dx=ln∣x+x2−a2∣+C
两个由基本积分②推导的常用积分
①
∫
1
x
d
x
=
2
x
+
C
\int \frac{1}{\sqrt{x}}dx = 2\sqrt{x} + C
∫x1dx=2x+C
②
∫
1
x
2
d
x
=
−
1
x
+
C
\int \frac{1}{x^2}dx = -\frac{1}{x} + C
∫x21dx=−x1+C