排列组合
(1)排列组合公式
从
m
m
m个人中挑出
n
n
n个人进行排列的可能数:
P
m
n
=
m
!
(
m
−
n
)
!
P_m^n = \frac{m!}{(m-n)!}
Pmn=(m−n)!m!从
m
m
m个人中挑出
n
n
n个人进行组合的可能数:
C
m
n
=
m
!
n
!
(
m
−
n
)
!
C_m^n=\frac{m!}{n!(m-n)!}
Cmn=n!(m−n)!m!
(2)加法原理(两种方法均能完成此事): m + n m+n m+n
(3)乘法原理(两个步骤分别不能完成此事): m × n m \times n m×n
古典概型
定义:若随机试验满足如下条件:
(1)有限性:试验的样本空间
Ω
\Omega
Ω只有有限个样本点,即
Ω
=
{
ω
1
,
ω
2
,
.
.
.
,
ω
n
}
\Omega = \{\omega_1,\omega_2,...,\omega_n\}
Ω={ω1,ω2,...,ωn}(2)等可能性:试验中的样本点的发生是等可能的,即
P
(
{
ω
1
}
)
=
P
(
{
ω
2
}
)
=
.
.
.
=
P
(
{
ω
n
}
)
P(\{\omega_1\})=P(\{\omega_2\})=...=P(\{\omega_n\})
P({ω1})=P({ω2})=...=P({ωn})则该随机试验为古典试验。
由定义可知,对于古典概型,有:
1
=
P
(
Ω
)
=
n
P
(
{
ω
i
}
)
1 = P(\Omega) = nP(\{\omega_i\})
1=P(Ω)=nP({ωi})
古典概型的概率:
设古典概型的随机试验的样本空间
Ω
=
{
ω
1
,
ω
2
,
.
.
.
,
ω
n
}
\Omega = \{\omega_1, \omega_2,...,\omega_n\}
Ω={ω1,ω2,...,ωn},事件
A
A
A中含有
k
(
k
≤
n
)
k(k \leq n)
k(k≤n)个样本点,则称
k
n
\frac{k}{n}
nk为
A
A
A发生的概论,记为:
P
(
A
)
=
k
n
=
A
中
含
有
的
样
本
点
数
总
样
本
点
数
P(A) = \frac{k}{n} = \frac{A中含有的样本点数}{总样本点数}
P(A)=nk=总样本点数A中含有的样本点数这样的概率叫做古典概型。
几何概型
定义:若随机试验满足如下条件:
(1)可度量性:样本空间
Ω
\Omega
Ω是一个几何区域,这个区域的大小可以度量(如线段长度、平面面积、立体体积),并把
Ω
\Omega
Ω的度量记为
μ
(
Ω
)
\mu(\Omega)
μ(Ω)
(2)等可能性:向区域
Ω
\Omega
Ω内任意投掷一个点,落在区域内任意等度量处都是等可能的。
则该随机试验为几何概型。
几何概型的概率:
若以
A
A
A表示"在区域
Ω
\Omega
Ω中随机地取一点,而该点落在区域
A
A
A中"这一事件,则事件
A
A
A的概率计算公式为:
P
(
A
)
=
μ
(
A
)
μ
(
Ω
)
=
A
的
几
何
度
量
区
域
整
体
的
几
何
度
量
P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{A的几何度量}{区域整体的几何度量}
P(A)=μ(Ω)μ(A)=区域整体的几何度量A的几何度量这样的概率叫做几何概型。
伯努利概型
定义:若随机试验满足如下条件:
(1)在随机试验中,只有两个基本事件
A
A
A与
A
‾
\overline A
A
则该随机试验为伯努利试验。
伯努力概型的概率:
在一次试验中,的出现
A
A
A概率为
p
p
p,则出现
A
‾
\overline A
A的概率为
1
−
p
1-p
1−p,记为:
P
(
A
)
=
p
P(A)=p
P(A)=p
P
(
A
‾
)
=
1
−
p
P(\overline A) = 1-p
P(A)=1−p这样的概率叫做伯努利概型。
n
n
n重伯努利试验:
把伯努利试验独立重复(单独进行且概率不变)地进行
n
n
n次,各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其他各次试验的结果,这样的试验称为
n
n
n重伯努利试验。
n重伯努利试验的概率:
在
n
n
n重伯努利试验中,若事件
A
A
A在一次试验中发生的概率为
p
p
p,设
P
(
A
)
=
p
,
P
(
A
‾
)
=
1
−
p
P(A)=p,P(\overline A) = 1-p
P(A)=p,P(A)=1−p,则在这
n
n
n次试验中事件
A
A
A恰好发生
k
k
k次的概率为:
P
n
(
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
,
k
=
1
,
2
,
.
.
.
,
n
P_n(k)=C_n^k p^k(1-p)^{n-k},k=1,2,...,n
Pn(k)=Cnkpk(1−p)n−k,k=1,2,...,n