排列组合、古典概型、几何概型与伯努利概型

本文深入讲解了概率论的基础概念,包括排列组合、古典概型、几何概型和伯努利概型,详细解释了各种概型的定义、特点及计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

排列组合

(1)排列组合公式
m m m个人中挑出 n n n个人进行排列的可能数: P m n = m ! ( m − n ) ! P_m^n = \frac{m!}{(m-n)!} Pmn=(mn)!m! m m m个人中挑出 n n n个人进行组合的可能数: C m n = m ! n ! ( m − n ) ! C_m^n=\frac{m!}{n!(m-n)!} Cmn=n!(mn)!m!

(2)加法原理(两种方法均能完成此事): m + n m+n m+n

(3)乘法原理(两个步骤分别不能完成此事): m × n m \times n m×n

古典概型

定义:若随机试验满足如下条件:
(1)有限性:试验的样本空间 Ω \Omega Ω只有有限个样本点,即 Ω = { ω 1 , ω 2 , . . . , ω n } \Omega = \{\omega_1,\omega_2,...,\omega_n\} Ω={ω1,ω2,...,ωn}(2)等可能性:试验中的样本点的发生是等可能的,即 P ( { ω 1 } ) = P ( { ω 2 } ) = . . . = P ( { ω n } ) P(\{\omega_1\})=P(\{\omega_2\})=...=P(\{\omega_n\}) P({ω1})=P({ω2})=...=P({ωn})则该随机试验为古典试验。

由定义可知,对于古典概型,有: 1 = P ( Ω ) = n P ( { ω i } ) 1 = P(\Omega) = nP(\{\omega_i\}) 1=P(Ω)=nP({ωi})
古典概型的概率:
设古典概型的随机试验的样本空间 Ω = { ω 1 , ω 2 , . . . , ω n } \Omega = \{\omega_1, \omega_2,...,\omega_n\} Ω={ω1,ω2,...,ωn},事件 A A A中含有 k ( k ≤ n ) k(k \leq n) k(kn)个样本点,则称 k n \frac{k}{n} nk A A A发生的概论,记为: P ( A ) = k n = A 中 含 有 的 样 本 点 数 总 样 本 点 数 P(A) = \frac{k}{n} = \frac{A中含有的样本点数}{总样本点数} P(A)=nk=A这样的概率叫做古典概型。

几何概型

定义:若随机试验满足如下条件:
(1)可度量性:样本空间 Ω \Omega Ω是一个几何区域,这个区域的大小可以度量(如线段长度、平面面积、立体体积),并把 Ω \Omega Ω的度量记为 μ ( Ω ) \mu(\Omega) μ(Ω)
(2)等可能性:向区域 Ω \Omega Ω内任意投掷一个点,落在区域内任意等度量处都是等可能的。
则该随机试验为几何概型。

几何概型的概率
若以 A A A表示"在区域 Ω \Omega Ω中随机地取一点,而该点落在区域 A A A中"这一事件,则事件 A A A的概率计算公式为: P ( A ) = μ ( A ) μ ( Ω ) = A 的 几 何 度 量 区 域 整 体 的 几 何 度 量 P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{A的几何度量}{区域整体的几何度量} P(A)=μ(Ω)μ(A)=A这样的概率叫做几何概型。

伯努利概型

定义:若随机试验满足如下条件:
(1)在随机试验中,只有两个基本事件 A A A A ‾ \overline A A
则该随机试验为伯努利试验。

伯努力概型的概率
在一次试验中,的出现 A A A概率为 p p p,则出现 A ‾ \overline A A的概率为 1 − p 1-p 1p,记为: P ( A ) = p P(A)=p P(A)=p P ( A ‾ ) = 1 − p P(\overline A) = 1-p P(A)=1p这样的概率叫做伯努利概型。

n n n重伯努利试验
把伯努利试验独立重复(单独进行且概率不变)地进行 n n n次,各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其他各次试验的结果,这样的试验称为 n n n重伯努利试验。

n重伯努利试验的概率
n n n重伯努利试验中,若事件 A A A在一次试验中发生的概率为 p p p,设 P ( A ) = p , P ( A ‾ ) = 1 − p P(A)=p,P(\overline A) = 1-p P(A)=pP(A)=1p,则在这 n n n次试验中事件 A A A恰好发生 k k k次的概率为: P n ( k ) = C n k p k ( 1 − p ) n − k , k = 1 , 2 , . . . , n P_n(k)=C_n^k p^k(1-p)^{n-k},k=1,2,...,n Pn(k)=Cnkpk(1p)nk,k=1,2,...,n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值