离散型随机变量及其分布率
若随机变量 X X X只能取有限个数值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn或可列无穷多个数值 x 1 , x 2 , . . . , x n , . . . x_1,x_2,...,x_n,... x1,x2,...,xn,...,则称 X X X为离散型随机变量
要掌握一个离散型随机变量 X X X的统计规律,必须知道 X X X的所有可能取的值以及每一个可能值的概率
定义:设离散型随机变量 X X X所有可能的取值为 x i ( i = 1 , 2 , . . . ) x_i(i=1,2,...) xi(i=1,2,...), X X X取各个可能值的概率,即事件 { X = x i } \{X=x_i\} {X=xi}的概率为 P { X = x i } = p i , i = 1 , 2 , . . . P\{X=x_i\}=p_i,i=1,2,... P{X=xi}=pi,i=1,2,...则称该式子为离散型随机变量 X X X的分布律。分布律也常用表格形式表示:
X | x 1 x_1 x1 | x 2 x_2 x2 | . . . ... ... | x i x_i xi | . . . ... ... |
---|---|---|---|---|---|
p i p_i pi | p 1 p_1 p1 | p 2 p_2 p2 | . . . ... ... | p i p_i pi | . . . ... ... |
由于随机变量的分布函数可以完整地描述随机变量的统计规律,因此,由离散型随机变量的分布律可以推出分布函数,反之亦然。
设 F ( x ) F(x) F(x)是离散型随机变量 X X X的分布函数,则 X X X的分布律 P { X = x i } = p i ≥ 0 , i = 1 , 2 , . . . P\{X=x_i\}=p_i \geq 0,i=1,2,... P{X=xi}=pi≥0,i=1,2,...易得 F ( x ) = P { X ≤ x } = ∑ x i ≤ x P { X = x i } = ∑ x i ≤ x p i F(x)=P\{X \leq x\}=\sum_{x_i \leq x}P\{X=x_i\}=\sum_{x_i \leq x}p_i F(x)=P{X≤x}=xi≤x∑P{X=xi}=xi≤x∑pi
常见的离散型随机变量的概率分布
1、两点分布 B ( 1 , p ) B(1, p) B(1,p)
若随机变量的 X X X只能取 x 1 x_1 x1与 x 2 x_2 x2,且它的分布律为 P { X = x 1 } = p , ( 0 < p < 1 ) P\{X=x_1\}=p,(0 < p < 1) P{X=x1}=p,(0<p<1) P { X = x 2 } = 1 − p P\{X=x_2\}=1-p P{X=x2}=1−p即 P { X = x i } = ( 1 − p ) 1 − x i p x i , i = 1 , 2 P\{X=x_i\}=(1-p)^{1-x_i}p^{x_i},i=1,2 P{X=xi}=(1−p)1−xipxi,i=1,2则称 X X X服从参数为 p p p的两点分布
特别地,当 x 1 = 1 , x 2 = 0 x_1=1,x_2=0 x1=1,x2=0时两点分布也叫 ( 0 − 1 ) (0-1) (0−1)分布,记为 X ∼ ( 0 , 1 ) X \thicksim (0,1) X∼(0,1)分布或 X ∼ B ( 1 , p ) X \thicksim B(1,p) X∼B(1,p)
2、二项分布 B ( n , p ) B(n, p) B(n,p)
若随机变量的 X X X分布律为 P { X = k } = C n k ( 1 − p ) n − k p k , k = 0 , 1 , 2 , . . . n P\{X=k\}=C_n^k(1-p)^{n-k}p^k,k=0,1,2,...n P{X=k}=Cnk(1−p)n−kpk,k=0,1,2,...n则称 X X X服从参数为 n , p ( 0 < p < 1 ) n,p(0 < p < 1) n,p(0<p<1)的二项分布,记为 B ( n , p ) B(n,p) B(n,p)
这与 n n n重伯努利试验中事件 A A A发生 k k k次的概率计算公式一致 P n ( k ) = P { X = k } = C n k ( 1 − p ) n − k p k , k = 0 , 1 , 2 , . . . n P_n(k)=P\{X=k\}=C_n^k(1-p)^{n-k}p^k,k=0,1,2,...n Pn(k)=P{X=k}=Cnk(1−p)n−kpk,k=0,1,2,...n可知,若 X ∼ B ( n , p ) X \thicksim B(n, p) X∼B(n,p), X = k X=k X=k就可以用来表示 n n n重伯努利试验中事件 A A A恰好发生 k k k次
二项分布的近似计算
①泊松近似:
泊松近似即泊松定理
当
X
∼
B
(
n
,
p
)
X\sim B(n,p)
X∼B(n,p),当
n
n
n很大(
n
⩾
40
n\geqslant 40
n⩾40)且
p
p
p很小(
p
⩽
0.1
p\leqslant 0.1
p⩽0.1)时,可以用泊松分布来近似拟合二项分布,有
X
∼
P
(
k
,
n
p
)
X\sim P(k,np)
X∼P(k,np):
C
n
k
p
k
(
1
−
p
)
n
−
k
≈
λ
k
k
!
e
−
λ
C_{n}^{k}p^k(1-p)^{n-k} \approx\frac{\lambda^k}{k!}e^{-\lambda}
Cnkpk(1−p)n−k≈k!λke−λ其中
λ
=
n
p
\lambda=np
λ=np
②标准正太近似:
当
X
∼
B
(
n
,
p
)
X\sim B(n,p)
X∼B(n,p),当
n
n
n充分大时,可以用标准正太分布来近似拟合二项分布,有
X
∼
N
(
n
p
,
n
p
(
1
−
p
)
)
X\sim N(np,np(1-p))
X∼N(np,np(1−p)):
P
(
a
<
X
<
b
)
≈
Φ
(
b
−
n
p
n
p
(
1
−
p
)
)
−
Φ
(
a
−
n
p
n
p
(
1
−
p
)
)
P(a < X < b)\approx \Phi(\frac{b-np}{\sqrt{np(1-p)}})-\Phi(\frac{a-np}{\sqrt{np(1-p)}})
P(a<X<b)≈Φ(np(1−p)b−np)−Φ(np(1−p)a−np)
拓展:
多项式展开定理:
(
a
+
b
)
n
=
∑
k
=
0
n
C
n
k
a
k
b
n
−
k
(a+b)^n=\sum_{k=0}^n C_n^ka^kb^{n-k}
(a+b)n=k=0∑nCnkakbn−k
幂级数展开定理: e x = ∑ n = 0 ∞ x n n ! e^x=\sum_{n=0}^\infty \frac{x^n}{n!} ex=n=0∑∞n!xn
3、泊松分布 P ( k , λ ) P(k,\lambda) P(k,λ)
泊松定理:设 λ > 0 \lambda > 0 λ>0是一常数, n n n是正整数。若 n p n = λ np_n=\lambda npn=λ,则对任一固定的非负整数 k k k有: lim n → ∞ C n k ( 1 − p n ) n − k p n = λ k k ! e − λ \lim_{n \to \infty}C_n^k(1-p_n)^{n-k}p_n=\frac{\lambda^k}{k!}e^{-\lambda} n→∞limCnk(1−pn)n−kpn=k!λke−λ
若随机变量 X X X的分布律为 P { X = k } = λ k k ! e − λ P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda} P{X=k}=k!λke−λ则称 X X X服从参数为 λ \lambda λ的泊松分布,记为 X ∼ P ( λ ) X \thicksim P(\lambda) X∼P(λ)或 X ∼ P ( k ; λ ) X \thicksim P(k;\lambda) X∼P(k;λ)
泊松分布的概率值为: P ( k ; λ ) = P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , . . . P(k;\lambda) = P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... P(k;λ)=P{X=k}=k!λke−λ,k=0,1,2,...
连续型随机变量及其概率密度函数
定义:设 X X X是随机变量, F ( X ) F(X) F(X)是它的分布函数,若存在一个非负可积函数 f ( x ) f(x) f(x),使得对任意的 x ∈ R x \in R x∈R,有: F ( x ) = P { X } F(x)=P\{X \} F(x)=P{X}则称 X X X为连续型随机变量,其中 f ( x ) f(x) f(x)称为 X X X的概率密度函数,简称概率密度或密度函数
概率密度函数的性质
- 非负性: f ( x ) ≥ 0 , x ∈ R f(x) \geq 0,x \in R f(x)≥0,x∈R
- 规范性: ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx = 1 ∫−∞+∞f(x)dx=1
- p { a < X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x , ( a ≤ b ) p\{a < X \leq b\} = F(b)-F(a)=\int_{a}^{b}f(x)dx,(a \leq b) p{a<X≤b}=F(b)−F(a)=∫abf(x)dx,(a≤b)
- 若 f ( x ) f(x) f(x)在 x x x处是连续的,则分布函数的导数等于概率密度函数,即: F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)
- 若 X X X是连续型随机变量,对 ∀ a ∈ R \forall a \in R ∀a∈R,有 P { X = a } = 0 P\{X=a\}=0 P{X=a}=0,即对于连续型随机变量,取得某一点的概率为0(注意这里的概率为0不代表不可能事件)
常见的连续型随机变量的概率分布
1、均匀分布 U [ a , b ] U[a,b] U[a,b]
若随机变量 X X X的概率密度函数为 f ( x ) = { 1 b − a , a ⩽ x ⩽ b 0 , o t h e r w i s e f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b\\ 0, & otherwise \end{cases} f(x)={b−a1,0,a⩽x⩽botherwise则称 X X X在区间 [ a , b ] [a,b] [a,b]上服从均匀分布,记为 X ∼ U [ a , b ] X\sim U[a,b] X∼U[a,b]
易知 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0,并且 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx = 1 ∫−∞+∞f(x)dx=1
均匀分布中 X X X的分布函数为 F ( x ) = { 0 , x < a x − a b − a , a ⩽ x < b 1 , x ⩾ b F(x) = \begin{cases} 0, & x < a\\ \frac{x-a}{b-a}, & a \leqslant x < b \\ 1, & x \geqslant b \end{cases} F(x)=⎩⎪⎨⎪⎧0,b−ax−a,1,x<aa⩽x<bx⩾b
2、指数分布 E ( λ ) E(\lambda) E(λ)
若随机变量 X X X的概率密度函数为 f ( x ) = { λ e − λ x , x > 0 0 , x ⩽ 0 f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \leqslant 0 \end{cases} f(x)={λe−λx,0,x>0x⩽0其中 λ > 0 \lambda > 0 λ>0为常数
则称随机变量 X X X服从参数为 λ \lambda λ(失效率)的指数分布,记为 X ∼ E ( λ ) X \sim E(\lambda) X∼E(λ)
显然 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0,且: ∫ − ∞ + ∞ f ( x ) d x = ∫ 0 + ∞ λ e − λ x d x = 1 \int_{-\infty}^{+\infty}f(x)dx = \int_{0}^{+\infty}\lambda e^{-\lambda x}dx = 1 ∫−∞+∞f(x)dx=∫0+∞λe−λxdx=1指数分布中 X X X的分布函数为: F ( x ) = { 1 − e − λ x , x > 0 0 , x ⩽ 0 F(x) = \begin{cases} 1-e^{-\lambda x}, & x > 0\\ 0, & x \leqslant 0 \end{cases} F(x)={1−e−λx,0,x>0x⩽0
3、正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)
若随机变量 X X X的概率密度函数为 f ( x ) = 1 2 π σ e − ( x − μ 2 ) 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-\mu^2)}{2\sigma^2}},-\infty < x < +\infty f(x)=2πσ1e−2σ2(x−μ2),−∞<x<+∞其中 μ , σ ( σ > 0 ) \mu,\sigma(\sigma > 0) μ,σ(σ>0)为常数,则称 X X X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布或高斯分布,记为 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) X∼N(μ,σ2)
显然 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0,且 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ 2 ) 2 σ 2 d x = 1 \int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-\mu^2)}{2\sigma^2}}dx = 1 ∫−∞+∞f(x)dx=∫−∞+∞2πσ1e−2σ2(x−μ2)dx=1
标准正态分布
N
∼
(
0
,
1
)
N\sim (0,1)
N∼(0,1):
若
X
∼
N
(
μ
,
σ
2
)
,
则
X\sim N(\mu,\sigma^2),则
X∼N(μ,σ2),则
Y
=
X
−
μ
σ
2
∼
N
(
0
,
1
)
Y=\frac{X-\mu}{\sqrt{\sigma^2}} \sim N(0, 1)
Y=σ2X−μ∼N(0,1)标准正态分布的分布函数:
Φ
(
x
)
=
P
(
X
⩽
x
)
=
1
2
π
∫
−
∞
x
e
−
u
2
2
d
u
\Phi(x)=P(X \leqslant x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{u^2}{2}}du
Φ(x)=P(X⩽x)=2π1∫−∞xe−2u2du标准正态分布的概率密度函数:
ϕ
(
x
)
=
1
2
π
e
−
x
2
2
\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}
ϕ(x)=2π1e−2x2标准正态分布的具体值可以通过查表得知:标准正态分布表