离散型随机变量和连续型随机变量及其常见分布

离散型随机变量及其分布率

若随机变量 X X X只能取有限个数值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn或可列无穷多个数值 x 1 , x 2 , . . . , x n , . . . x_1,x_2,...,x_n,... x1,x2,...,xn,...,则称 X X X离散型随机变量

要掌握一个离散型随机变量 X X X的统计规律,必须知道 X X X所有可能取的值以及每一个可能值的概率

定义:设离散型随机变量 X X X所有可能的取值为 x i ( i = 1 , 2 , . . . ) x_i(i=1,2,...) xi(i=1,2,...) X X X取各个可能值的概率,即事件 { X = x i } \{X=x_i\} {X=xi}的概率为 P { X = x i } = p i , i = 1 , 2 , . . . P\{X=x_i\}=p_i,i=1,2,... P{X=xi}=pii=1,2,...则称该式子为离散型随机变量 X X X的分布律。分布律也常用表格形式表示:

X x 1 x_1 x1 x 2 x_2 x2 . . . ... ... x i x_i xi . . . ... ...
p i p_i pi p 1 p_1 p1 p 2 p_2 p2 . . . ... ... p i p_i pi . . . ... ...

由于随机变量的分布函数可以完整地描述随机变量的统计规律,因此,由离散型随机变量的分布律可以推出分布函数,反之亦然。

F ( x ) F(x) F(x)是离散型随机变量 X X X的分布函数,则 X X X的分布律 P { X = x i } = p i ≥ 0 , i = 1 , 2 , . . . P\{X=x_i\}=p_i \geq 0,i=1,2,... P{X=xi}=pi0i=1,2,...易得 F ( x ) = P { X ≤ x } = ∑ x i ≤ x P { X = x i } = ∑ x i ≤ x p i F(x)=P\{X \leq x\}=\sum_{x_i \leq x}P\{X=x_i\}=\sum_{x_i \leq x}p_i F(x)=P{Xx}=xixP{X=xi}=xixpi

常见的离散型随机变量的概率分布

1、两点分布 B ( 1 , p ) B(1, p) B(1,p)

若随机变量的 X X X只能取 x 1 x_1 x1 x 2 x_2 x2,且它的分布律为 P { X = x 1 } = p , ( 0 < p < 1 ) P\{X=x_1\}=p,(0 < p < 1) P{X=x1}=p(0<p<1) P { X = x 2 } = 1 − p P\{X=x_2\}=1-p P{X=x2}=1p P { X = x i } = ( 1 − p ) 1 − x i p x i , i = 1 , 2 P\{X=x_i\}=(1-p)^{1-x_i}p^{x_i},i=1,2 P{X=xi}=(1p)1xipxii=1,2则称 X X X服从参数为 p p p的两点分布

特别地,当 x 1 = 1 , x 2 = 0 x_1=1,x_2=0 x1=1x2=0时两点分布也叫 ( 0 − 1 ) (0-1) (01)分布,记为 X ∼ ( 0 , 1 ) X \thicksim (0,1) X(0,1)分布或 X ∼ B ( 1 , p ) X \thicksim B(1,p) XB(1,p)

2、二项分布 B ( n , p ) B(n, p) B(n,p)

若随机变量的 X X X分布律为 P { X = k } = C n k ( 1 − p ) n − k p k , k = 0 , 1 , 2 , . . . n P\{X=k\}=C_n^k(1-p)^{n-k}p^k,k=0,1,2,...n P{X=k}=Cnk(1p)nkpkk=0,1,2,...n则称 X X X服从参数为 n , p ( 0 < p < 1 ) n,p(0 < p < 1) np(0<p<1)的二项分布,记为 B ( n , p ) B(n,p) B(n,p)

这与 n n n重伯努利试验中事件 A A A发生 k k k次的概率计算公式一致 P n ( k ) = P { X = k } = C n k ( 1 − p ) n − k p k , k = 0 , 1 , 2 , . . . n P_n(k)=P\{X=k\}=C_n^k(1-p)^{n-k}p^k,k=0,1,2,...n Pn(k)=P{X=k}=Cnk(1p)nkpkk=0,1,2,...n可知,若 X ∼ B ( n , p ) X \thicksim B(n, p) XB(n,p) X = k X=k X=k就可以用来表示 n n n重伯努利试验中事件 A A A恰好发生 k k k

二项分布的近似计算

①泊松近似:
泊松近似即泊松定理
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),当 n n n很大( n ⩾ 40 n\geqslant 40 n40)且 p p p很小( p ⩽ 0.1 p\leqslant 0.1 p0.1)时,可以用泊松分布来近似拟合二项分布,有 X ∼ P ( k , n p ) X\sim P(k,np) XP(k,np) C n k p k ( 1 − p ) n − k ≈ λ k k ! e − λ C_{n}^{k}p^k(1-p)^{n-k} \approx\frac{\lambda^k}{k!}e^{-\lambda} Cnkpk(1p)nkk!λkeλ其中 λ = n p \lambda=np λ=np

②标准正太近似:
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),当 n n n充分大时,可以用标准正太分布来近似拟合二项分布,有 X ∼ N ( n p , n p ( 1 − p ) ) X\sim N(np,np(1-p)) XN(np,np(1p)) P ( a < X < b ) ≈ Φ ( b − n p n p ( 1 − p ) ) − Φ ( a − n p n p ( 1 − p ) ) P(a < X < b)\approx \Phi(\frac{b-np}{\sqrt{np(1-p)}})-\Phi(\frac{a-np}{\sqrt{np(1-p)}}) P(a<X<b)Φ(np(1p) bnp)Φ(np(1p) anp)

拓展
多项式展开定理: ( a + b ) n = ∑ k = 0 n C n k a k b n − k (a+b)^n=\sum_{k=0}^n C_n^ka^kb^{n-k} (a+b)n=k=0nCnkakbnk

幂级数展开定理: e x = ∑ n = 0 ∞ x n n ! e^x=\sum_{n=0}^\infty \frac{x^n}{n!} ex=n=0n!xn

3、泊松分布 P ( k , λ ) P(k,\lambda) P(k,λ)

泊松定理:设 λ > 0 \lambda > 0 λ>0是一常数, n n n是正整数。若 n p n = λ np_n=\lambda npn=λ,则对任一固定的非负整数 k k k有: lim ⁡ n → ∞ C n k ( 1 − p n ) n − k p n = λ k k ! e − λ \lim_{n \to \infty}C_n^k(1-p_n)^{n-k}p_n=\frac{\lambda^k}{k!}e^{-\lambda} nlimCnk(1pn)nkpn=k!λkeλ

若随机变量 X X X的分布律为 P { X = k } = λ k k ! e − λ P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda} P{X=k}=k!λkeλ则称 X X X服从参数为 λ \lambda λ的泊松分布,记为 X ∼ P ( λ ) X \thicksim P(\lambda) XP(λ) X ∼ P ( k ; λ ) X \thicksim P(k;\lambda) XP(k;λ)

泊松分布的概率值为: P ( k ; λ ) = P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , . . . P(k;\lambda) = P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... P(k;λ)=P{X=k}=k!λkeλk=0,1,2,...

连续型随机变量及其概率密度函数

定义:设 X X X是随机变量, F ( X ) F(X) F(X)是它的分布函数,若存在一个非负可积函数 f ( x ) f(x) f(x),使得对任意的 x ∈ R x \in R xR,有: F ( x ) = P { X } F(x)=P\{X \} F(x)=P{X}则称 X X X为连续型随机变量,其中 f ( x ) f(x) f(x)称为 X X X的概率密度函数,简称概率密度或密度函数

概率密度函数的性质

  1. 非负性: f ( x ) ≥ 0 , x ∈ R f(x) \geq 0,x \in R f(x)0,xR
  2. 规范性: ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx = 1 +f(x)dx=1
  3. p { a < X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x , ( a ≤ b ) p\{a < X \leq b\} = F(b)-F(a)=\int_{a}^{b}f(x)dx,(a \leq b) p{a<Xb}=F(b)F(a)=abf(x)dx,(ab)
  4. f ( x ) f(x) f(x) x x x处是连续的,则分布函数的导数等于概率密度函数,即: F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
  5. X X X是连续型随机变量,对 ∀ a ∈ R \forall a \in R aR,有 P { X = a } = 0 P\{X=a\}=0 P{X=a}=0,即对于连续型随机变量,取得某一点的概率为0(注意这里的概率为0不代表不可能事件)

常见的连续型随机变量的概率分布

1、均匀分布 U [ a , b ] U[a,b] U[a,b]

若随机变量 X X X的概率密度函数为 f ( x ) = { 1 b − a , a ⩽ x ⩽ b 0 , o t h e r w i s e f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b\\ 0, & otherwise \end{cases} f(x)={ba1,0,axbotherwise则称 X X X在区间 [ a , b ] [a,b] [a,b]上服从均匀分布,记为 X ∼ U [ a , b ] X\sim U[a,b] XU[a,b]

易知 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0,并且 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx = 1 +f(x)dx=1

均匀分布中 X X X的分布函数为 F ( x ) = { 0 , x < a x − a b − a , a ⩽ x < b 1 , x ⩾ b F(x) = \begin{cases} 0, & x < a\\ \frac{x-a}{b-a}, & a \leqslant x < b \\ 1, & x \geqslant b \end{cases} F(x)=0,baxa,1,x<aax<bxb

2、指数分布 E ( λ ) E(\lambda) E(λ)

若随机变量 X X X的概率密度函数为 f ( x ) = { λ e − λ x , x > 0 0 , x ⩽ 0 f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \leqslant 0 \end{cases} f(x)={λeλx,0,x>0x0其中 λ > 0 \lambda > 0 λ>0为常数

则称随机变量 X X X服从参数为 λ \lambda λ(失效率)的指数分布,记为 X ∼ E ( λ ) X \sim E(\lambda) XE(λ)

显然 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0,且: ∫ − ∞ + ∞ f ( x ) d x = ∫ 0 + ∞ λ e − λ x d x = 1 \int_{-\infty}^{+\infty}f(x)dx = \int_{0}^{+\infty}\lambda e^{-\lambda x}dx = 1 +f(x)dx=0+λeλxdx=1指数分布中 X X X的分布函数为: F ( x ) = { 1 − e − λ x , x > 0 0 , x ⩽ 0 F(x) = \begin{cases} 1-e^{-\lambda x}, & x > 0\\ 0, & x \leqslant 0 \end{cases} F(x)={1eλx,0,x>0x0

3、正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)

若随机变量 X X X的概率密度函数为 f ( x ) = 1 2 π σ e − ( x − μ 2 ) 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-\mu^2)}{2\sigma^2}},-\infty < x < +\infty f(x)=2π σ1e2σ2(xμ2),<x<+其中 μ , σ ( σ > 0 ) \mu,\sigma(\sigma > 0) μ,σ(σ>0)为常数,则称 X X X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布或高斯分布,记为 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2)

显然 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0,且 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ 2 ) 2 σ 2 d x = 1 \int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-\mu^2)}{2\sigma^2}}dx = 1 +f(x)dx=+2π σ1e2σ2(xμ2)dx=1

标准正态分布 N ∼ ( 0 , 1 ) N\sim (0,1) N(0,1):
X ∼ N ( μ , σ 2 ) , 则 X\sim N(\mu,\sigma^2),则 XN(μ,σ2), Y = X − μ σ 2 ∼ N ( 0 , 1 ) Y=\frac{X-\mu}{\sqrt{\sigma^2}} \sim N(0, 1) Y=σ2 XμN(0,1)标准正态分布的分布函数: Φ ( x ) = P ( X ⩽ x ) = 1 2 π ∫ − ∞ x e − u 2 2 d u \Phi(x)=P(X \leqslant x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{u^2}{2}}du Φ(x)=P(Xx)=2π 1xe2u2du标准正态分布的概率密度函数: ϕ ( x ) = 1 2 π e − x 2 2 \phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} ϕ(x)=2π 1e2x2标准正态分布的具体值可以通过查表得知:标准正态分布表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值